Inferring gene regulatory networks with non-stationary dynamic Bayesian networks Dirk Husmeier Frank Dondelinger Sophie Lebre Biomathematics & Statistics Scotland
Overview Introduction Non-homogeneous dynamic Bayesian network for non-stationary processes Flexible network structure Open problems
Can we learn signalling pathways from postgenomic data? From Sachs et al Science 2005
Network reconstruction from postgenomic data
Friedman et al. (2000), J. Comp. Biol. 7, Marriage between graph theory and probability theory
Bayes net ODE model
A CB D EF NODES EDGES Graph theory Directed acyclic graph (DAG) representing conditional independence relations. Probability theory It is possible to score a network in light of the data: P(D|M), D:data, M: network structure. We can infer how well a particular network explains the observed data.
[A]= w1[P1] + w2[P2] + w3[P3] + w4[P4] + noise BGe (Linear model) A P1 P2 P4 P3 w1 w4 w2 w3
BDe (Nonlinear discretized model) P1 P2 P1 P2 Activator Repressor Activator Repressor Activation Inhibition Allow for noise: probabilities Conditional multinomial distribution P P
Model Parameters q Integral analytically tractable!
BDe: UAI 1994 BGe: UAI 1995
Dynamic Bayesian network
Example: 2 genes 16 different network structures Best network: maximum score
Identify the best network structure Ideal scenario: Large data sets, low noise
Uncertainty about the best network structure Limited number of experimental replications, high noise
Sample of high-scoring networks
Feature extraction, e.g. marginal posterior probabilities of the edges
Sample of high-scoring networks Feature extraction, e.g. marginal posterior probabilities of the edges High-confident edge High-confident non-edge Uncertainty about edges
Can we generalize this scheme to more than 2 genes? In principle yes. However …
Number of structures Number of nodes
Configuration space of network structures Find the high-scoring structures Sampling from the posterior distribution Taken from the MSc thesis by Ben Calderhead
Madigan & York (1995), Guidici & Castello (2003)
Configuration space of network structures MCMC Local change Ifaccept If accept with probability Taken from the MSc thesis by Ben Calderhead
Overview Introduction Non-homogeneous dynamic Bayesian networks for non-stationary processes Flexible network structure Open problems
Dynamic Bayesian network
Example: 4 genes, 10 time points t1t1 t2t2 t3t3 t4t4 t5t5 t6t6 t7t7 t8t8 t9t9 t 10 X (1) X 1,1 X 1,2 X 1,3 X 1,4 X 1,5 X 1,6 X 1,7 X 1,8 X 1,9 X 1,10 X (2) X 2,1 X 2,2 X 2,3 X 2,4 X 2,5 X 2,6 X 2,7 X 2,8 X 2,9 X 2,10 X (3) X 3,1 X 3,2 X 3,3 X 3,4 X 3,5 X 3,6 X 3,7 X 3,8 X 3,9 X 3,10 X (4) X 4,1 X 4,2 X 4,3 X 4,4 X 4,5 X 4,6 X 4,7 X 4,8 X 4,9 X 4,10
t1t1 t2t2 t3t3 t4t4 t5t5 t6t6 t7t7 t8t8 t9t9 t 10 X (1) X 1,1 X 1,2 X 1,3 X 1,4 X 1,5 X 1,6 X 1,7 X 1,8 X 1,9 X 1,10 X (2) X 2,1 X 2,2 X 2,3 X 2,4 X 2,5 X 2,6 X 2,7 X 2,8 X 2,9 X 2,10 X (3) X 3,1 X 3,2 X 3,3 X 3,4 X 3,5 X 3,6 X 3,7 X 3,8 X 3,9 X 3,10 X (4) X 4,1 X 4,2 X 4,3 X 4,4 X 4,5 X 4,6 X 4,7 X 4,8 X 4,9 X 4,10 Standard dynamic Bayesian network: homogeneous model
Limitations of the homogeneity assumption
Our new model: heterogeneous dynamic Bayesian network. Here: 2 components t1t1 t2t2 t3t3 t4t4 t5t5 t6t6 t7t7 t8t8 t9t9 t 10 X (1) X 1,1 X 1,2 X 1,3 X 1,4 X 1,5 X 1,6 X 1,7 X 1,8 X 1,9 X 1,10 X (2) X 2,1 X 2,2 X 2,3 X 2,4 X 2,5 X 2,6 X 2,7 X 2,8 X 2,9 X 2,10 X (3) X 3,1 X 3,2 X 3,3 X 3,4 X 3,5 X 3,6 X 3,7 X 3,8 X 3,9 X 3,10 X (4) X 4,1 X 4,2 X 4,3 X 4,4 X 4,5 X 4,6 X 4,7 X 4,8 X 4,9 X 4,10
t1t1 t2t2 t3t3 t4t4 t5t5 t6t6 t7t7 t8t8 t9t9 t 10 X (1) X 1,1 X 1,2 X 1,3 X 1,4 X 1,5 X 1,6 X 1,7 X 1,8 X 1,9 X 1,10 X (2) X 2,1 X 2,2 X 2,3 X 2,4 X 2,5 X 2,6 X 2,7 X 2,8 X 2,9 X 2,10 X (3) X 3,1 X 3,2 X 3,3 X 3,4 X 3,5 X 3,6 X 3,7 X 3,8 X 3,9 X 3,10 X (4) X 4,1 X 4,2 X 4,3 X 4,4 X 4,5 X 4,6 X 4,7 X 4,8 X 4,9 X 4,10 Our new model: heterogeneous dynamic Bayesian network. Here: 3 components
Learning with MCMC q k h Number of components (here: 3) Allocation vector
Non-homogeneous model Non-linear model
[A]= w1[P1] + w2[P2] + w3[P3] + w4[P4] + noise BGe: Linear model A P1 P2 P4 P3 w1 w4 w2 w3
BDe: Nonlinear discretized model P1 P2 P1 P2 Activator Repressor Activator Repressor Activation Inhibition Allow for noise: probabilities Conditional multinomial distribution P P
Pros and cons of the two models Linear Gaussian model Restriction to linear processes Original data no information loss Multinomial model Nonlinear model Discretization information loss
Can we get an approximate nonlinear model without data discretization? y x
Idea: piecewise linear model y x
t1t1 t2t2 t3t3 t4t4 t5t5 t6t6 t7t7 t8t8 t9t9 t 10 X (1) X 1,1 X 1,2 X 1,3 X 1,4 X 1,5 X 1,6 X 1,7 X 1,8 X 1,9 X 1,10 X (2) X 2,1 X 2,2 X 2,3 X 2,4 X 2,5 X 2,6 X 2,7 X 2,8 X 2,9 X 2,10 X (3) X 3,1 X 3,2 X 3,3 X 3,4 X 3,5 X 3,6 X 3,7 X 3,8 X 3,9 X 3,10 X (4) X 4,1 X 4,2 X 4,3 X 4,4 X 4,5 X 4,6 X 4,7 X 4,8 X 4,9 X 4,10 Inhomogeneous dynamic Bayesian network with common changepoints
Inhomogenous dynamic Bayesian network with node-specific changepoints t1t1 t2t2 t3t3 t4t4 t5t5 t6t6 t7t7 t8t8 t9t9 t 10 X (1) X 1,1 X 1,2 X 1,3 X 1,4 X 1,5 X 1,6 X 1,7 X 1,8 X 1,9 X 1,10 X (2) X 2,1 X 2,2 X 2,3 X 2,4 X 2,5 X 2,6 X 2,7 X 2,8 X 2,9 X 2,10 X (3) X 3,1 X 3,2 X 3,3 X 3,4 X 3,5 X 3,6 X 3,7 X 3,8 X 3,9 X 3,10 X (4) X 4,1 X 4,2 X 4,3 X 4,4 X 4,5 X 4,6 X 4,7 X 4,8 X 4,9 X 4,10
NIPS 2009
Overview Introduction Non-homogeneous dynamic Bayesian network for non-stationary processes Flexible network structure Open problems
Non-stationarity in the regulatory process
Non-stationarity in the network structure
ICML 2010
Flexible network structure with regularization
Morphogenesis in Drosophila melanogaster Gene expression measurements over 66 time steps of 4028 genes (Arbeitman et al., Science, 2002). Selection of 11 genes involved in muscle development. Zhao et al. (2006), Bioinformatics 22
Transition probabilities: flexible structure with regularization Morphogenetic transitions: Embryo larva larva pupa pupa adult
Comparison with: Dondelinger, Lèbre & Husmeier Ahmed & Xing
Collaboration with Frank Dondelinger and Sophie Lèbre NIPS 2010
Method based on homogeneous DBNs Method based on differential equations
Sample of high-scoring networks
Feature extraction, e.g. marginal posterior probabilities of the edges
Method based on homogeneous DBNs Method based on differential equations
Overview Introduction Non-homogeneous dynamic Bayesian network for non-stationary processes Flexible network structure Open problems
Exponential versus binomial prior distribution Exploration of various information sharing options
How to deal with static data?
Change-point process Free allocation
Allocation sampler versus change-point process More flexibility, unrestricted mixture model. Not restricted to time series Higher computational costs Incorporates plausible prior knowledge for time series. Reduced complexity Less universal, not applicable to static data
Marco Grzegorczyk University of Dortmund Germany Frank Dondelinger Biomathematics & Statistics Scotland United Kingdom Sophie Lèbre Université de Strasbourg France Acknowledgements
Further details for discussion during question time
Details on exponential prior
Hierarchical Bayesian model
MCMC scheme (for symmetric proposal distributions)
Details on other priors
where
Partition function Ignoring the fan-in restriction: Number of genes
Simulation study We randomly generated 10 networks with 10 nodes each. Number of regulators for each node drawn from a Poisson distribution with mean=3. 5 time series segments Network changes: number of changes drawn from a Poisson distribution. For each segment: time series of length 50 generated from a linear regression model, interaction parameters drawn from N(0,1), iid Gaussian noise from N(0,1).
Synthetic simulation study No information sharing between adjacent segments Information sharing between adjacent segments Frank Dondelinger, Sophie Lèbre, Dirk Husmeier: ICML 2010