Pressure-broadening of water lines in the THz frequency region: improvements and confirmations for spectroscopic databases G. Cazzoli, C. Puzzarini Dipartimento.

Slides:



Advertisements
Similar presentations
SOIR Data Workshop: Spectroscopy SOIR Spectroscopy A.C. Vandaele, R. Drummond, A. Mahieux, S. Robert, V. Wilquet SOIR Belgian Institute for Space.
Advertisements

June 26, th International Symposium on Molecular Spectroscopy The Pure Rotational Spectrum of ZnS (X 1  + ) Lindsay N. Zack Lucy M. Ziurys Department.
D. Chris Benner and V Malathy Devi College of William and Mary Charles E. Miller, Linda R. Brown and Robert A. Toth Jet Propulsion Laboratory Self- and.
64th OSU International Symposium on Molecular Spectroscopy June 22-26, 2009 José Luis Doménech Instituto de Estructura de la Materia 1 MEASUREMENT OF ROTATIONAL.
Victor Gorshelev, A. Serdyuchenko, M. Buchwitz, J. Burrows, University of Bremen, Germany; N. Humpage, J. Remedios, University of Leicester, UK IMPROVED.
DDS-BASED FAST SCAN SPECTROMETER Eugen A. Alekseev Institute of Radio Astronomy of NASU, Kharkov, Ukraine Roman A. Motiyenko and Laurent Margulès Laboratoire.
The Water Molecule: Line Position and Line Intensity Analyses up to the Second Triad L. H. Coudert, a G. Wagner, b M. Birk, b and J.-M. Flaud a a Laboratoire.
EXPERIMENTAL AND THEORETICAL STUDY OF WATER-VAPOR CONTINUUM ABSORPTION IN THE THZ REGION FROM 0.3 TO 2.7 THZ V.B. PODOBEDOV, D.F. PLUSQUELLIC, K.M. SIEGRIST.
PRESSURE BROADENING AND SHIFT COEFFICIENTS FOR THE BAND OF 12 C 16 O 2 NEAR 6348 cm -1 D. CHRIS BENNER and V MALATHY DEVI Department of Physics,
9th HITRAN Database & Atmospheric Spectroscopy Applications conferences Formaldehyde broadening coefficients Agnès Perrin Laboratoire Interuniversitaire.
Laser spectroscopic study of ozone in the 100←000 band for the SWIFT instrument M. Guinet, C. Janssen, D. Mondelain, C. Camy-Peyret LPMAA, CNRS- UPMC (France)
Observations of SO 2 spectra with a quantum cascade laser spectrometer around 1090 and 1160 cm -1. Comparison with HITRAN database and updated calculations.
Electron Paramagnetic Resonance spectrometer
11 Collisional effects on spectral shapes and remote sensing H. Tran LISA, CNRS UMR 7583, Université Paris-Est Créteil and Université Paris Diderot
LINE PARAMETERS OF WATER VAPOR IN THE NEAR- AND MID-INFRARED REGIONS DETERMINED USING TUNEABLE LASER SPECTROSCOPY Nofal IBRAHIM, Pascale CHELIN, Johannes.
Jet Propulsion Laboratory California Institute of Technology The College of William and MaryUniversity of Lethbridge.
Remote Sensing Technology Institute 1 HITRAN 2006 Conference, Cambridge MA, June 26th-28th 2006 Water Pressure Broadening: A Never-ending Story Georg Wagner,
IR/THz Double Resonance Spectroscopy in the Pressure Broadened Regime: A Path Towards Atmospheric Gas Sensing Sree H. Srikantaiah Dane J. Phillips Frank.
V. Brosco1, R. Fazio2 , F. W. J. Hekking3, J. P. Pekola4
Self- and Air-Broadening, Shifts, and Line Mixing in the ν 2 Band of CH 4 M. A. H. Smith 1, D. Chris Benner 2, V. Malathy Devi 2, and A. Predoi-Cross 3.
Self- and air-broadened line shape parameters in the band of 12 CH 4 : cm -1 V. Malathy Devi Department of Physics The College of William.
ACE Spectroscopy for the Atmospheric Chemistry Experiment (ACE) Chris Boone, Kaley Walker, and Peter Bernath HITRAN Meeting June, 2010.
Sub-Doppler Spectroscopy of Molecular Ions in the Mid-IR James N. Hodges, Kyle N. Crabtree, & Benjamin J. McCall WI06 – June 20, 2012 University of Illinois.
Columbus, 18 June 2013 International Symposium on Molecular Spectroscopy 68 th Meeting - June 17-21, 2013, Ohio State University Determination of the Boltzmann.
Fukuoka Univ. A. Nishiyama, A. Matsuba, M. Misono Doppler-Free Two-Photon Absorption Spectroscopy of Naphthalene Assisted by an Optical Frequency Comb.
Measurements of N 2 - and O 2 -pressure broadening and pressure-induced shifts for 16 O 12 C 32 S transitions in the 3 band M.A. Koshelev and M.Yu. Tretyakov.
Methyl Bromide : Spectroscopic line parameters in the 7- and 10-μm region D. Jacquemart 1, N. Lacome 1, F. Kwabia-Tchana 1, I. Kleiner 2 1 Laboratoire.
HIGH RESOLUTION SPECTROSCOPY USING A TUNABLE THz SYNTHESIZER BASED ON PHOTOMIXING Arnaud Cuisset, Laboratoire de Physico-Chimie de l’Atmosphère, Maison.
Methyl Bromide : Spectroscopic line parameters in the 10-μm region D. Jacquemart 1, N. Lacome 1, F. Kwabia-Tchana 1, I. Kleiner 2 1 Laboratoire de Dynamique,
Broadband Mid-infrared Comb-Resolved Fourier Transform Spectroscopy Kevin F. Lee A. Mills, C. Mohr, Jie Jiang, Martin E. Fermann P. Masłowski.
SILYL FLUORIDE: LAMB-DIP SPECTRA and EQUILIBRIUM STRUCTURE Cristina PUZZARINI and Gabriele CAZZOLI Dipartimento di Chimica “G. Ciamician”, Università di.
Temperature dependence of N 2 -, O 2 -, and air-broadened half- widths of water vapor transitions R. R. Gamache, B. K. Antony and P. R. Gamache Dept. of.
HIGH PRECISION MID-IR SPECTROSCOPY OF N2O NEAR 4.5 μm Wei-jo (Vivian) Ting and Jow-Tsong Shy Department of Physics National Tsing Hua University Hsinchu,
Precision Measurement of CO 2 Hotband Transition at 4.3  m Using a Hot Cell PEI-LING LUO, JYUN-YU TIAN, HSHAN-CHEN CHEN, Institute of Photonics Technologies,
Spectroscopic signatures of bond- breaking internal rotation in HCP. Mark S Child and Matt P Jacobson Oxford University UK UK EPSRC.
GLOBAL FIT ANALYSIS OF THE FOUR LOWEST VIBRATIONAL STATES OF ETHANE: THE 12  9 BAND L. Borvayeh and N. Moazzen-Ahmadi Department of Physics and Astronomy.
DIMETHYL -ETHER THREE DIMENTIONAL SPECTRA M. VILLA U.A.M.-I. (México) and M. L. SENENT C.S.I.C. (Spain)
Tony Clough, Mark Shephard and Jennifer Delamere Atmospheric & Environmental Research, Inc. Colleagues University of Wisconsin International Radiation.
MICROWAVE SPECTRUM OF 12 C 16 O S.A. TASHKUN and S.N. MIKHAILENKO, Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, Zuev.
Line list of HD 18 O rotation-vibration transitions for atmospheric applications Semen MIKHAILENKO, Olga NAUMENKO, and Sergei TASHKUN Laboratory of Theoretical.
CDSD (Carbon Dioxide Spectroscopic Databank): Updated and Enlarged Version for Atmospheric Applications Sergei Tashkun and Valery Perevalov Laboratory.
Deuterium enriched water vapor Fourier Transform Spectroscopy: the cm -1 spectral region. (1) L. Daumont, (1) A. Jenouvrier, (2) S. Fally, (3)
CO 2 Lineshapes Near 2060nm Thinh Q. Bui California Institute of Technology ISMS 2014.
Copyright All rights reserved. June 25, 2015ISMS, 2015
K. Iwakuni, H. Sera, M. Abe, and H. Sasada Department of Physics, faculty of Science and Technology, Keio University, Japan 1 70 th. International Symposium.
Manfred Birk, Georg Wagner Remote Sensing Technology Institute (IMF) Deutsches Zentrum für Luft- und Raumfahrt (DLR) Lorenzo Lodi, Jonathan Tennyson Department.
ABSOLUTE 17 O NMR SCALE: a JOINT ROTATIONAL SPECTROSCOPY and QUANTUM-CHEMISTRY STUDY Cristina PUZZARINI and Gabriele CAZZOLI Dipartimento di Chimica “G.
Calculation of lineshape parameters for self- broadening of water vapor transitions via complex Robert-Bonamy theory Bobby Antony, Steven Neshyba* & Robert.
Laboratory of Millimetre-wave Spectroscopy of Bologna The ROTATIONAL SPECTRUM of HDO : ACCURATE SPECTROSCOPIC and HYPERFINE PARAMETERS G. Cazzoli*, V.
Laboratory of Millimetre-wave Spectroscopy of Bologna LABORATORY MEASUREMENTS in SUPPORT of ASTRONOMICAL OBSERVATIONS: ROTATIONAL SPECTROSCOPY up to the.
OBSERVATION AND ANALYSIS OF THE A 1 -A 2 SPLITTING OF CH 3 D M. ABE*, H. Sera and H. SASADA Department of Physics, Faculty of Science and Technology, Keio.
EXPERIMENTAL TRANSMISSION SPECTRA OF HOT AMMONIA IN THE INFRARED Monday, June 22 nd 2015 ISMS 70 th Meeting Champaign, Illinois EXPERIMENTAL TRANSMISSION.
Concentration Dependence of Line Shapes in the Band of Acetylene Matthew Cich, Damien Forthomme, Greg Hall, Chris McRaven, Trevor Sears, Sylvestre.
Infrared spectroscopy of planetological molecules Isabelle Kleiner Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), Créteil, France.
Lineshape analysis of CH3F-(ortho-H2)n absorption spectra in 3000 cm-1 region in solid para-H2 Yuki Miyamoto Graduate School of Natural Science and Technology,
Saturation Roi Levy. Motivation To show the deference between linear and non linear spectroscopy To understand how saturation spectroscopy is been applied.
> ISMS 2017 > Joep Loos • P2355: Experimental line list of water vapor > Experimental line list of water vapor absorption lines in the spectral.
G. Mevi1,2, G. Muscari1, P. P. Bertagnolio1, I. Fiorucci1
MICROWAVE AND FIR SPECTROSCOPY OF DIMETHYLSULFIDE IN THE GROUND, FIRST AND SECOND EXCITED TORSIONAL STATES V. Ilyushin1, I. Armieieva1, O. Dorovskaya1,
Z. Reed,* O. Polyansky,† J. Hodges*
A THz PHOTOMIXING SYNTHESIZER BASED ON A FIBER FREQUENCY COMB DEDICATED TO HIGH RESOLUTION SPECTROSCOPY OF ATMOSPHERIC COMPOUNDS Arnaud Cuisset, Laboratoire.
G. Mevi1,2, G. Muscari1, P. P. Bertagnolio1, I. Fiorucci1
Nofal IBRAHIM, Pascale CHELIN, Johannes ORPHAL
THE TORSIONAL FUNDAMENTAL BAND AND ROTATIONAL SPECTRA UP TO 940 GHZ OF THE GROUND, FIRST AND SECOND EXCITED TORSIONAL STATES OF ACETONE V.V. Ilyushin1,
NH3 measurements in the far-IR
Microwaves for Qubits on Helium
Experimental and Theoretical He-broadened Line Parameters of CO in the Fundamental Band Adriana Predoi-Cross1*, Hoimonti Rozario1, Koorosh Esteki1, Shamria.
Weston Aenchbacher1, Mira Naftaly2, and Richard Dudley2
Koorosh Esteki1, Adriana Predoi-Cross1
An accurate and complete empirical line list for water vapor
Presentation transcript:

Pressure-broadening of water lines in the THz frequency region: improvements and confirmations for spectroscopic databases G. Cazzoli, C. Puzzarini Dipartimento di Chimica “G. Ciamician”, Università di Bologna G. Buffa G. Buffa IPCF-CNR and Dipartimento di Fisica "E. Fermi", Pisa 10th International HITRAN Conference — June, 2008

OUTLINES 1) Experimental set-up: The THz spectrometer The THz spectrometer 2) Theoretical calculations: The semiclassical approach The semiclassical approach 1) Experimental details: The THz spectrometer The THz spectrometer 2) Theoretical calculations: The semiclassical approach The semiclassical approach 3) Experiment & Theory: Results Results 3) Experiment & Theory: Results Results

1) Experimental details: The THz spectrometer The THz spectrometer - set up - set up - techniques - techniques - procedure - procedure 1) Experimental details: The THz spectrometer The THz spectrometer - set up - set up - techniques - techniques - procedure - procedure

FREQUENCY RANGE LMSB (2) GHz (from fundamental to the 6th harmonic) GHz (8th harmonic) GHz (8th harmonic) (3) THz (9th harmonic) THz (12th harmonic) THz (12th harmonic) (1) GHz (wave-guide Stark cell – P band) (3) THz (9th harmonic) THz (12th harmonic) THz (12th harmonic)

BLOCK DIAGRAM of the THz SPECTROMETER MULTIPLIER SYNTH 10 kHz-1 GHz MULT fSfS nfSnfS MIX MULT SYNCR ref: 20 MHz RF OSCILL GHz f RF 20 MHz 73 MHz |f G - mf RF | GUNN P. SUPPLY and SYNCR ref: 73 MHz |f RF - nf S | HP8642A SYNTH MIX corr fGfG Ge DETECTOR PREAMPL 10 MHz freq. standard ref GUNN DIODES CELL FUNCTION GENERATOR 300 Hz CHOPPER LOCK-IN AMPLIFIER  FREQUENCY MODULATION TECHNIQUE 2x frequency modualtion

BLOCK DIAGRAM of the THz SPECTROMETER MULTIPLIER SYNTH 10 kHz-1 GHz MULT fSfS nfSnfS MIX MULT SYNCR ref: 20 MHz RF OSCILL GHz f RF 20 MHz 73 MHz |f G - mf RF | GUNN P. SUPPLY and SYNCR ref: 73 MHz |f RF - nf S | HP8642A SYNTH MIX corr fGfG Ge DETECTOR PREAMPL 10 MHz freq. standard ref GUNN DIODES CELL FUNCTION GENERATOR 300 Hz CHOPPER LOCK-IN AMPLIFIER  AMPLITUDE MODULATION TECHNIQUE chopper frequency revolution

(3) EXPERIMENTAL SET-UP in the THz REGION Quartz cell (1cm long)THz scource (gunn + multiplier) Chopper Bolometer The THz SPECTROMETER

(3) EXPERIMENTAL SET-UP in the THz REGION The THz SPECTROMETER THz scource Cell

1) Experimental details: The THz spectrometer The THz spectrometer - set up - set up - techniques - techniques - procedure - procedure 1) Experimental details: The THz spectrometer The THz spectrometer - set up - set up - techniques - techniques - procedure - procedure

AMPLITUDE MODULATION TECHNIQUE Natural line profile Lambert-Beer law I = I 0 exp[  ( - 0 )L]

LINE SHAPE ANALYSIS To retrieve COLLISIONAL HALF-WIDTH  L : by fitting the observed line profiles – natural line profiles - directly to the chosen line profile model (Voigt profile, Galatry profile, Speed Dependent Voigt profile, … …) Residuals: Residuals: Obs. – Calc.

SOURCE MODULATION TECHNIQUE FREQUENCY MODULATION (sine wave): (t) = ( - 0 ) +  cos  m t (t) = ( - 0 ) +  cos  m t  = modulation depth  = modulation depth  m = modulation frequency K(x, y, z) = Voigt, Galatry or SP-Voigt or … function Line profile expanded in a cosine Fourier series. 2nd harmonic detection: 2nd harmonic detection: a 2 (  ) = 2/   K(x,y,z) cos 2  d  a 2 (  ) = 2/   K(x,y,z) cos 2  d  0 Validity: Absorption  6% I = I 0 [1-  ( - 0 )L]

LINE SHAPE ANALYSIS COLLISIONAL HALF-WIDTH  L : by fitting the observed line profiles to a model that explicitly accounts for frequency modulation [Cazzoli & Dore JMS 141, 49 (1990); Dore JMS 221, 93 (2003)]. Residuals: Residuals: Obs. – Calc.

1) Experimental details: The THz spectrometer The THz spectrometer - set up - set up - techniques - techniques - procedure - procedure 1) Experimental details: The THz spectrometer The THz spectrometer - set up - set up - techniques - techniques - procedure - procedure

LINE SHAPE ANALYSIS: Which line profile model? Voigt profile Galatry profile The GHz line of O 3 broadened by N 2 LINE SHAPE ANALYSIS: Which line profile model?

Galatry vs Speed-dependent Voigt profile

RETRIEVAL PARAMETERS PRESSURE BROADENING COEFFICIENT  : PRESSURE BROADENING COEFFICIENT  : linear fit of  L against P by a weighted linear fit of  L against P  perturb 0000  L =  0 +  perturb  P perturb Lorentzian halfwidth Broadening due to absorber

RETRIEVAL PARAMETERS PRESSURE SHIFT COEFFICIENT s : PRESSURE SHIFT COEFFICIENT s : linear fit of against P by a weighted linear fit of against P = 0 + s perturb  P perturb = 0 + s perturb  P perturb Transition frequency Frequency at P pertub = 0 s 0

2) Theoretical calculations: The semiclassical approach The semiclassical approach 2) Theoretical calculations: The semiclassical approach The semiclassical approach

THEORETICAL DETAILS COLLISIONAL RELAXATION EFFICIENCY FUNCTION P COLLISIONAL RELAXATION described within the IMPACT APPROXIMATION by the EFFICIENCY FUNCTION P. P For a line i  f P = 1 - S = scattering matrix, H 0 = Hamiltonian of internal degrees, V = collisional interaction, O = time ordering operator. SEMICLASSICAL APPROXIMATIONb SEMICLASSICAL APPROXIMATION (impact parameter b, relative velocity v, internal state of perturber r): P = P(b,v,r) P = P(b,v,r). linewidth  lineshift s P The linewidth  and lineshift s : real and imaginary parts of P:  r = population of level r, f(v) = Maxwellian velocity distribution, n = perturber density.

3) Experiment & Theory: Results Results - H 2 O: which lines - H 2 O: which lines - theo & exp results: - theo & exp results: detailed comparison detailed comparison 3) Experiment & Theory: Results Results - H 2 O: which lines - H 2 O: which lines - theo & exp results: - theo & exp results: detailed comparison detailed comparison

J = 3 1, ,3 * (1.097 THz) J = 3 1, ,3 * (1.097 THz) J = 1 1, ,0  (1.113 THz) J = 1 1, ,0  (1.113 THz) J = 7 2, ,8  (1.147 THz) J = 7 2, ,8  (1.147 THz) J = 3 1, ,1 * (1.153 THz) J = 3 1, ,1 * (1.153 THz) J = 6 3, ,1 * (1.158 THz) J = 6 3, ,1 * (1.158 THz) J = 3 2, ,2 * (1.163 THz) J = 3 2, ,2 * (1.163 THz) J = 8 5, ,1  (1.168 THz) J = 8 5, ,1  (1.168 THz) J = 7 4, ,1  (1.173 THz) J = 7 4, ,1  (1.173 THz) J = 8 5, ,2  (1.191 THz) J = 8 5, ,2  (1.191 THz) J = 6 3, ,2  (1.542 THz) J = 6 3, ,2  (1.542 THz) H 2 O: THz pure rotational lines investigated  Self-broad: amplitude modulation  N 2 - & O 2 -broad frequency modulation frequency modulation  Self-broad: amplitude modulation  N 2 - & O 2 -broad frequency modulation frequency modulation  Cazzoli et al. JQSRT 2008  Cazzoli et al. JQSRT submitted * Cazzoli et al. JQSRT in preparation

H 2 O: THz pure rotational lines investigated J = 3 1, ,3 * (1.097 THz) J = 3 1, ,3 * (1.097 THz) J = 1 1, ,0  (1.113 THz) J = 1 1, ,0  (1.113 THz) J = 7 2, ,8  (1.147 THz) J = 7 2, ,8  (1.147 THz) J = 3 1, ,1 * (1.153 THz) J = 3 1, ,1 * (1.153 THz) J = 6 3, ,1 * (1.158 THz) J = 6 3, ,1 * (1.158 THz) J = 3 2, ,2 * (1.163 THz) J = 3 2, ,2 * (1.163 THz) J = 8 5, ,1  (1.168 THz) J = 8 5, ,1  (1.168 THz) J = 7 4, ,1  (1.173 THz) J = 7 4, ,1  (1.173 THz) J = 8 5, ,2  (1.191 THz) J = 8 5, ,2  (1.191 THz) J = 6 3, ,2  (1.542 THz) J = 6 3, ,2  (1.542 THz) What was available for these lines? What was available for these lines? - experimental values for 1 1, ,0 (N 2 & O 2 ) - calculated and/or extrapolated data for others - experimental values for 1 1, ,0 (N 2 & O 2 ) - calculated and/or extrapolated data for others

3) Experiment & Theory: Results Results - H 2 O: which lines - H 2 O: which lines - theo & exp results: - theo & exp results: previous exp data previous exp data 3) Experiment & Theory: Results Results - H 2 O: which lines - H 2 O: which lines - theo & exp results: - theo & exp results: previous exp data previous exp data

J = 1 1,1 – 0 0,0 transition of H 2 O T = 297 K Cazzoli et al. JQSRT 2008

J = 1 1,1 – 0 0,0 transition of H 2 O T = 297 K Cazzoli et al. JQSRT 2008

J = 1 1,1 – 0 0,0 transition of H 2 O T = 297 K Cazzoli et al. JQSRT 2008

Self N2N2N2N2 O2O2O2O2Air 297 K ExpTheoExpTheoExpTheoExpTheo This work 19.72(46) (15) (12) (13)3.8 Gasster Gasster et al. 3.67(10) 2.99(37) 3.53(8) HITRAN (8) J = 1 1,1 – 0 0,0 transition of H 2 O Improvements wrt old measurements Improvements wrt old measurements

3) Experiment & Theory: Results Results - H 2 O: which lines - H 2 O: which lines - theo & exp results: - theo & exp results: HITRAN self broad HITRAN self broad 3) Experiment & Theory: Results Results - H 2 O: which lines - H 2 O: which lines - theo & exp results: - theo & exp results: HITRAN self broad HITRAN self broad

Cazzoli et al. JQSRT submitted

Cazzoli et al. JQSRT in preparation

ExpTheo This work J = 3 1, , (22)21.54 HITRAN This work J = 1 1, , (46)19.8 HITRAN 4.74 This work J = 7 2, , (34)17.93 HITRAN This work J = 3 1, , (18)21.22 HITRAN This work J = 6 3, , (8)16.27 HITRAN This work J = 3 2, , (11)19.80 HITRAN This work J = 8 5, , (26)11.33 HITRAN This work J = 7 4, , (27)13.03 HITRAN This work J = 8 5, , (8)11.88 HITRAN This work J = 6 3, ,2 17.56 HITRAN What’s the problem? What’s the problem?SELF-broadening

COMPARISON : semiclassical calc. (SC) vs HITRAN (assumption*) values * dependence of the broadening parameter on J”

COMPARISON : semiclassical calculations (SC) vs HITRAN (exp*) values * IR lines: cm -1 (R. A. Toth)

COMPARISON : semiclassical calculations (SC) vs EXP* values * Markov 1994, Cazzoli et al. 2007, Cazzoli et al. 2008

Suggestion: Make use of calculated values when no reliable experimental data are available HITRAN ref.# linesMean %error#lines with %err > 25% Ref. 51: Averaged values as a function of J”

3) Experiment & Theory: Results Results - H 2 O: which lines - H 2 O: which lines - theo & exp results: - theo & exp results: N 2, O 2 & air broad N 2, O 2 & air broad 3) Experiment & Theory: Results Results - H 2 O: which lines - H 2 O: which lines - theo & exp results: - theo & exp results: N 2, O 2 & air broad N 2, O 2 & air broad

Cazzoli et al. JQSRT submitted

ExpTheo This work J = 3 1, , (82)4.00 HITRAN 4.13 This work J = 1 1, ,0 3.96(13)3.8 HITRAN3.53(8) This work J = 7 2, , (20)3.13 HITRAN 3.24 This work J = 3 1, , (75)3.77 HITRAN 3.65 This work J = 6 3, , (60)2.80 HITRAN 2.99 This work J = 3 2, , (57)3.77 HITRAN 3.93 This work J = 8 5, , (66)2.07 HITRAN 2.18 This work J = 7 4, , (34)2.42 HITRAN 2.59 This work J = 8 5, , (24)2.18 HITRAN 2.27 This work J = 6 3, , (72)3.28 HITRAN 3.32 Good agreement! Good agreement!AIR-broadening

3) Experiment & Theory: Results Results - H 2 O: which lines - H 2 O: which lines - theo & exp results: - theo & exp results: shift & SD param shift & SD param 3) Experiment & Theory: Results Results - H 2 O: which lines - H 2 O: which lines - theo & exp results: - theo & exp results: shift & SD param shift & SD param

Cazzoli et al. JQSRT 2008

Cazzoli et al. JQSRT submitted

Cazzoli et al. JQSRT in preparation

Conclusions  10 pure rotational THz water lines have been experimentally and theoretically been experimentally and theoretically investigated investigated  Good agreement between experiment and SC calculations and SC calculations  Update for HITRAN self broadening parameters is suggested parameters is suggested  Rather accurate experimental results have been obtained have been obtained

Thank you for your attention!

temperature exponent n Least-square fit: ln(X/X 0 ) = n ln(T 0 /T) TEMPERATURE DEPENDENCE TEMPERATURE DEPENDENCE

Laboratory of Millimetre-wave Spectroscopy of Bologna PRAHA 2006 temperature exponent n Least-square fit: ln(X/X 0 ) = n ln(T 0 /T)