n-p pairing in N=Z nuclei

Slides:



Advertisements
Similar presentations
Spectroscopy at the Particle Threshold H. Lenske 1.
Advertisements

Valence shell excitations in even-even spherical nuclei within microscopic model Ch. Stoyanov Institute for Nuclear Research and Nuclear Energy Sofia,
HL-3 May 2006Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-3) Structure of nuclei NN potential exchange force Terra incognita in nuclear.
Testing isospin-symmetry breaking and mapping the proton drip-line with Lanzhou facilities Yang Sun Shanghai Jiao Tong University, China SIAP, Jan.10,
Generalized pairing models, Saclay, June 2005 Generalized models of pairing in non-degenerate orbits J. Dukelsky, IEM, Madrid, Spain D.D. Warner, Daresbury,
12 June, 2006Istanbul, part I1 Mean Field Methods for Nuclear Structure Part 1: Ground State Properties: Hartree-Fock and Hartree-Fock- Bogoliubov Approaches.
Mean-field calculation based on proton-neutron mixed energy density functionals Koichi Sato (RIKEN Nishina Center) Collaborators: Jacek Dobaczewski (Univ.
Isospin symmetry breaking corrections to the superallowed beta decays from the angular momentum and isospin projected DFT: brief overview focusing on sources.
On the formulation of a functional theory for pairing with particle number restoration Guillaume Hupin GANIL, Caen FRANCE Collaborators : M. Bender (CENBG)
II. Spontaneous symmetry breaking. II.1 Weinberg’s chair Hamiltonian rotational invariant Why do we see the chair shape? States of different IM are so.
John Daoutidis October 5 th 2009 Technical University Munich Title Continuum Relativistic Random Phase Approximation in Spherical Nuclei.
Projected-shell-model study for the structure of transfermium nuclei Yang Sun Shanghai Jiao Tong University Beijing, June 9, 2009.
I. Bentley and S. Frauendorf Department of Physics University of Notre Dame, USA Calculation of the Wigner Term in the Binding Energies by Diagonalization.
Terminating states as a unique laboratory for testing nuclear energy density functional Maciej Zalewski, UW under supervision of W. Satuła Kazimierz Dolny,
M. Girod, F.Chappert, CEA Bruyères-le-Châtel Neutron Matter and Binding Energies with a New Gogny Force.
IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of.
Statistical properties of nuclei: beyond the mean field Yoram Alhassid (Yale University) Introduction Beyond the mean field: correlations via fluctuations.
Symmetries in Nuclei, Tokyo, 2008 Symmetries in Nuclei Symmetry and its mathematical description The role of symmetry in physics Symmetries of the nuclear.
The stability of triaxial superdeformed shape in odd-odd Lu isotopes Tu Ya.
FermiGasy. W. Udo Schröder, 2005 Angular Momentum Coupling 2 Addition of Angular Momenta    
Tens of MeV + NNN ab initio Intro:  define fundaments my model is „standing on” sp mean-field ( or nuclear DFT )  beyond mean-field ( projection.
XII Nuclear Physics Workshop Maria and Pierre Curie: Nuclear Structure Physics and Low-Energy Reactions, Sept , Kazimierz Dolny, Poland Self-Consistent.
1 New formulation of the Interacting Boson Model and the structure of exotic nuclei 10 th International Spring Seminar on Nuclear Physics Vietri sul Mare,
Effects of self-consistence violations in HF based RPA calculations for giant resonances Shalom Shlomo Texas A&M University.
Symmetries in Nuclei, Tokyo, 2008 Symmetries in Nuclei Symmetry and its mathematical description The role of symmetry in physics Symmetries of the nuclear.
Nuclear Structure and dynamics within the Energy Density Functional theory Denis Lacroix IPN Orsay Coll: G. Scamps, D. Gambacurta, G. Hupin M. Bender and.
Mean-Field Description of Heavy Neutron-Rich Nuclei P. D. Stevenson University of Surrey NUSTAR Neutron-Rich Minischool Surrey, 2005.
The calculation of Fermi transitions allows a microscopic estimation (Fig. 3) of the isospin mixing amount in the parent ground state, defined as the probability.
The Algebraic Approach 1.Introduction 2.The building blocks 3.Dynamical symmetries 4.Single nucleon description 5.Critical point symmetries 6.Symmetry.
Isovector scenario for nuclei near the N=Z line Anatoli Afanasjev S. Frauendorf Kai Neergard J. Sheikh.
Outline : towards effective superfluid local density approximation (SLDA) - general remarks pairing: volume-, mixed- or surface-type - selectivity/resolution.
1 Proton-neutron pairing by G-matrix in the deformed BCS Soongsil University, Korea Eun Ja Ha Myung-Ki Cheoun.
Isospin mixing and parity- violating electron scattering O. Moreno, P. Sarriguren, E. Moya de Guerra and J. M. Udías (IEM-CSIC Madrid and UCM Madrid) T.
N = Z N=Z line coincides with doubly-magic core Single-particle states wrt 100 Sn core Neutron-proton correlations in identical orbitals Neutron-proton.
Coupling of (deformed) core and weakly bound neutron M. Kimura (Hokkaido Univ.)
Spontaneous symmetry breaking and rotational bands S. Frauendorf Department of Physics University of Notre Dame.
NSDD Workshop, Trieste, February 2006 Nuclear Structure (I) Single-particle models P. Van Isacker, GANIL, France.
Symmetries and collective Nuclear excitations PRESENT AND FUTURE EXOTICS IN NUCLEAR PHYSICS In honor of Geirr Sletten at his 70 th birthday Stefan Frauendorf,
ShuangQuan Zhang School of Physics, Peking University Static chirality and chiral vibration of atomic nucleus in particle rotor model.
High spin structures as the probes of proton- neutron pairing. Anatoli Afanasjev Mississippi State University, USA Thanks to Stefan Frauendorf as a collaborator.
T=0 Pairing in Coordinate space Workshop ESNT, Paris Shufang Ban Royal Institute of Technology (KTH) Stockholm, Sweden.
NEUTRON SKIN AND GIANT RESONANCES Shalom Shlomo Cyclotron Institute Texas A&M University.
Variational multiparticle-multihole configuration mixing approach
Lecture 23: Applications of the Shell Model 27/11/ Generic pattern of single particle states solved in a Woods-Saxon (rounded square well)
Three-body force effect on the properties of asymmetric nuclear matter Wei Zuo Institute of Modern Physics, Lanzhou, China.
July 29-30, 2010, Dresden 1 Forbidden Beta Transitions in Neutrinoless Double Beta Decay Kazuo Muto Department of Physics, Tokyo Institute of Technology.
Some (more) High(ish)-Spin Nuclear Structure Paddy Regan Department of Physics Univesity of Surrey Guildford, UK Lecture 2 Low-energy.
Variational approach to isospin symmetry breaking in medium mass nuclei A. PETROVICI Institute for Physics and Nuclear Engineering, Bucharest, Romania.
Shape evolution of highly deformed 75 Kr and projected shell model description Yang Yingchun Shanghai Jiao Tong University Shanghai, August 24, 2009.
Left-handed Nuclei S. Frauendorf Department of Physics University of Notre Dame, USA IKH, Forschungszentrum Rossendorf Dresden, Germany.
PKU-CUSTIPEN 2015 Dirac Brueckner Hartree Fock and beyond Herbert Müther Institute of Theoretical Physics.
The i 13/2 Proton and j 15/2 Neutron Orbital and the SD Band in A~190 Region Xiao-tao He En-guang Zhao En-guang Zhao Institute of Theoretical Physics,
Nuclear density functional theory with a semi-contact 3-body interaction Denis Lacroix IPN Orsay Outline Infinite matter Results Energy density function.
Global fitting of pairing density functional; the isoscalar-density dependence revisited Masayuki YAMAGAMI (University of Aizu) Motivation Construction.
Variational Multiparticle-Multihole Configuration Mixing Method with the D1S Gogny force INPC2007, Tokyo, 06/06/2007 Nathalie Pillet (CEA Bruyères-le-Châtel,
Symmetries of the Cranked Mean Field S. Frauendorf Department of Physics University of Notre Dame USA IKH, Forschungszentrum Rossendorf, Dresden Germany.
g-ray spectroscopy of the sd-shell hypernuclei
Global nuclear structure aspects of tensor interaction Wojciech Satuła in collaboration with J.Dobaczewski, P. Olbratowski, M.Rafalski, T.R. Werner, R.A.
Pairing Evidence for pairing, what is pairing, why pairing exists, consequences of pairing – pairing gap, quasi-particles, etc. For now, until we see what.
Amand Faesler, University of Tuebingen, Germany. Short Range Nucleon-Nucleon Correlations, the Neutrinoless Double Beta Decay and the Neutrino Mass.
超重原子核的结构 孙 扬 上海交通大学 合作者:清华大学 龙桂鲁, F. Al-Khudair 中国原子能研究院 陈永寿,高早春 济南,山东大学, 2008 年 9 月 20 日.
Continuum quasiparticle linear response theory using the Skyrme functional for exotic nuclei University of Jyväskylä Kazuhito Mizuyama, Niigata University,
The role of isospin symmetry in medium-mass N ~ Z nuclei
Content of the talk Exotic clustering in neutron-rich nuclei
Structure and dynamics from the time-dependent Hartree-Fock model
Isospin Symmetry test on the semimagic 44Cr
Kernfysica: quarks, nucleonen en kernen
Pions in nuclei and tensor force
II. Spontaneous symmetry breaking
Department of Physics, Sichuan University
Presentation transcript:

n-p pairing in N=Z nuclei reality or fiction? W. Satuła University of Warsaw Motivation & fingerprints (basic concepts): symmetric nuclear matter calculations binding energies - mean-field crisis around N~Z line the Wigner energy and the generalized blocking phenomenon elementary isobaric exciatations in N~Z nuclei – a need for isosopin symmetry restoration cranking in isospace - response of t=0 pairing against rotations in isospace high-spin signatures of pn-pairing

Structure of nucleonic pairs N=Z  nucleons start to occupy „identical” spatial orbitals Nuclear interaction favoures L=0 coupling Pair-structure is governed by the Pauli principle: Isovector (or 1S0) pairs T=1, S=0 - Isoscalar (deuteron-like or 3S1) pairs T=0, S=1 Neutron Proton + Tz +1 0 -1 - Sz +1 0 -1

3S1-3D1 (coupled) pairing gap in symmetric Nuclear Matter from Paris VNN free-space sp spectrum BHF sp spectrum (in-medium corrections) tensor-force enhancement From M. Baldo et al. Phys. Rev. C52, 975 (1995)

Gaps from local effective pairing interaction DDDI: E. Garrido et al. PRC60, 064312 (1999) PRC63, 037304 (2001) DDDI used in Skyrme-HFB calculations by Terasaki et al. NPA621 (1997) 706. Isoscalar pairing Tensor force enhancement ro Cut-off!!! (otherwise divergent!)

3S1-3D1 (coupled) pairing gap in symmetric Nuclear Matter including relativistic corrections Saturation density O. Elgaroy, L.Engvik, M.Hjorth-Jensen, E.Osnes, Phys.Rev.C. 57 (1998) R1069 Includes relativistic in-medium corrections (sp levels from Dirac-Brueckner-HF)

Empirical NN interaction in N~Z T=1 channel: J=0 coupling dominates T=0 channel: J=1 and J=2j are similar T=0 is, on the average, stronger than T=1 by a factor of ~1.3 N.Anantaraman & J.P. Schiffer PL37B (1971) 229 Dufour & Zucker, Phys. Rev. C54, 1641 (1996)

The model: deformed mean-field plus pairing: Pairs p-n and p-ñ Pairs: ~ Pairs ñ-n and p-p « usual » ; T=1 ~ Pairs: p-ñ + n-p; T=1 0 0 ~ Pairs: p-ñ – n-p ; T=0 Hamiltonian BCS: N.Anantaraman and J.P. Schiffer PL37B (1971) 229

Comparison with delta-force towards a local theory M.Moinester, J.P. Schiffer, W.P. Alford, PR179 (1969) 984

BCS transformation BCS transformation takes the following form : real A.L.Goodman Nucl. Phys. A186 (1972) 475 BCS transformation takes the following form : real complex where the variational parameters are: i 2 Density matrix (occupation) and the pairing tensor Generalization: BCSHFB UiU & ViV matrices of dimension 4N

BCS Solution Energy (Routhian) Variational equation in N=Z system (without Coulomb) Occupation probabilities ; quasiparticle energies: Pair gaps:  n-ñ, p-p T=1 n-p + p-ñ ~ Gap T=0 aã Gap T=0 aa ~

T=0/T=1 (no)mixing 48Ca X= / Incomplete mixing? T=1, Tz=+/-1 andTz=0 W.S. & R.Wyss PLB 393 (1997) 1

Energy gain as a function of T=0/T=1 pairing’s mixing „x” Energy gain: DMass =E(T=0+1)- E(T=1) Thomas-Fermi X=1.1 X=1.2 X=1.3 X=1.4 / X= generalized blocking effect n-excess blocks pn-pairs scattering Wigner term from Myers & Swiatecki protons neutrons Satuła & Wyss PLB393 (1997) 1

Wigner effect from self-consistent Skyrme-HF N=Z Exp. HFBCS T=1 Sph. HFBCS T=1 Def. (SIII) Defficiency of conventional self-consistent models: HF or HFB including standard T=1, |Tz|=1 ~ p-p & n-n pairs: (N-Z)2 ~ T2 term is OK! no (or very weak) |N-Z| ~ term |N-Z|=2,4 (black) A.S. Jensen, P.G.Hansen, B.Jonson, Nucl.Phys. A431(1984) 393 o-o e-e

DE= asymT(T+x) The Wigner effect 1 2 w / w X= Jmax 0? 1?? 25 A=48 20 B (MeV) 15 48Cr 10 1.0 5 DE= asymT(T+x) 2 1 w w / w total 0.8 -4 4 N-Z 0.6 0.4 0? 1?? 1.25??? exp. in N~Z 4 ???? Wigner SU(4) 0.2 24Mg X= 0.0 1 2 3 4 5 6 7 Jmax

Isobaric excitations in N~Z nuclei 0.5 1.0 1.5 2.0 47/A [MeV] W(A) [MeV] 30 40 0.6 1.4 GT=0 GT=1 A The lowest: T=0, T=1 & T=2 in e-e nuclei T=0 & T=1 states in o-o nuclei The model needs to be extended to include isospin projection  isospin cranking strong T=0 pairing limit! J.Janecke, Nucl. Phys. A73 (1965) 73 A. Macchiavelli et al. Phys. Rev. C61 (2000) 041303(R) P.Vogel, Nucl. Phys. A662 (2000) 148

„inertia” defined through The extreme s.p.model: 4-fold degenerated equidistant s.p. spectrum Eigen-states (routhians) are 2-fold (Kramers) degene- rated „stright lines”: Crossings form simple arithmetic serie:   Energy: „inertia” defined through mean level spacing !!!

5 10 15 20 DET=2 [MeV] T=2 iso-cranking 20 30 40 50 A DE= deT2 1 2 14 T=2 states in e-e nuclei 5 10 15 20 20 28 DET=2 [MeV] hWS+HT=1 +HT=0-wtx T=2 hWS+HT=1 -wtx iso-cranking 20 30 40 50 A Iso-cranking gives excitation energy which goes like: DE= deT2 1 2 + Epair vacuum mean level spaceing at the Fermi energy

(iso)Coriolis antipairing effect iso-MoI D [MeV] hw [MeV] 48Cr 6 Tx 3 0.5 1.0 1.5 iso-moment of inertia D/e = 0.001 D [MeV] 1 2 3 hw [MeV] DT=0 DT=1 48Cr 6 Tx e=1 D/e = 0.5;1.0;1.5 0.7 0.6 iso-moment of inertia Tz 1 2 3 4 0.5 0.4 0.3 1 2 3 hw

T=1 states in e-e N=Z nuclei T=1 states: 2qp + isocranking

Isocranking N=Z odd-odd nuclei odd-T sequence T de 5 de de 2de 4de 6de 4 hw even-T sequence 3 de 2 de de 1 hw de 3de 5de iso-signature selection rule Eeven-T = 1/2deTx2 Eodd-T = 1/2deTx2 - 1/2de

T=0 vs T=1 states in o-o N=Z nuclei 1.0 2qp cranking vacuum 0.5 DET=1 - DET=0 [MeV] 0.0 -0.5 exp th 20 30 40 50 60 70 A

Neutron-proton pairing collectivity (a fit plus three easy steps) (III) ET=1 - ET=0 (even-even) ET=1 - ET=0 (odd-odd) (II) Wigner energy linked to the n-p pairing collectivity T=2 states in even-even nuclei obtained from isocranking T=1 states in even-even nuclei obtained as 2qp excitations T=1 states in odd-odd nuclei obtained from isocranking T=0 states in odd-odd nuclei obtained as 2qp excitations Fit of GT=0 /GT=1 ET=2 - ET=0 (even-even) (I) W. Satuła & R. Wyss Phys. Rev. Lett., 86, 4488 (2001); Phys. Rev. Lett., 87, 052504 (2001)

see e.g. Bohr & Mottelson „Nuclear Structure” vol. I Schematic isospin-isospin interaction: extreme sp model de 3de hw de+k 3(de+k) l even-even vacuum see e.g. Bohr & Mottelson „Nuclear Structure” vol. I Neergard PLB572 (2003) 159 1 H=hsp- wT+ kTT 2 mean - field (Hartree) HMF =hsp- (w - k T )T iso-cranking with isospin-dependent frequency!!! E= (de+k)T2 1 2 Hartree E= (de+k)T2 + kT 1 2 1 2 Hartree- -Fock

Pairing in fast rotating nuclei Muller et al., Nucl. Phys. A383 (1982) 233 Resistance of nucleonic paires against fast rotation:

48Cr ; HFB calculations including T=0 & T=1 pairing J. Terasaki, R. Wyss, and P.H. Heenen PLB437, 1 (1998) Skyrme interaction in p-h DDDI in p-p channel fully self-consistent theory no spherical symmetry two-classes of solutions: d3/2 g9/2 -1 - T=0 dominated at I=0 - T=1 dominated at I=0 isoscalar pairing Non-collective (oblate) rotation no T=0 at low spins Collective (prolate) rotation T=1 collapses [nf7/2 pf7/2] 4 16+ (termination) exp

(1) 73Kr – manifestation of (dynamical) T=0 pairing? R.Wyss, P.J. Davis, WS, R. Wadsworth Conventional TRS calculations involving only T=1 pairing: positive parity negative parity negative parity Ix 73Kr (+,+) 3qp (-,-) 73Kr -0.5 0.0 0.5 1.0 1.5 2.0 2.5 5 10 15 20 25 30 (-,-) Ew [MeV] 5qp 1qp 1qp 73Kr: Kelsall et al., Phys. Rev. C65 044331 (2005) 0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5 hw [MeV] hw [MeV] g 40 fp |1qp> = a+n(fp)|0> |3qp> = a+ng a+pg a+p(fp)|0> <1qp|E2|3qp> ~ 0 (one-body operator)

73Kr (2) 73Kr – manifestation of (dynamical) T=0 pairing? What makes the 1qp and 3qp configurations alike? Scattering of a T=0 np pair 5 10 15 20 25 30 0.4 0.8 1.2 1.6 0.2 0.6 1.0 1.4 hw [MeV] Ix 73Kr theory exp DT=0 Dp Dn 0.5 D [MeV] TRS involving T=0 and T=1 pairing in 73Kr n(fp) ng9/2 p(fp) pg9/2 n(fp)(-) vacuum 1qp configuration n(fp) p(fp) pg9/2 ng9/2 n(fp) ng9/2 ng9/2(+) pg9/2 p(fp)(-) 3qp configuration

(3) 73Kr – manifestation of (dynamical) T=0 pairing? Conventional TRS calculations involving only T=1 pairing in neighbouring nuclei: all bands positive parity negative parity Ix (-,+) 75Rb 75Rb 3qp 5 10 15 20 25 30 -0.5 0.0 0.5 1.0 1.5 2.0 (+,+) Ew [MeV] 1qp 3qp 1qp 0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5 hw [MeV] hw [MeV] Excellent agreement was obtained in: Tz=1 : 74Kr,76Rb, D. Rudolph et al. Phys. Rev. C56, 98 (1997) Tz=1/2: 75Rb, C. Gross et al. Phys. Rev. C56, R591 (1997) Tz=1/2: 79Y, S.D. Paul et al. Phys. Rev. C58, R3037 (1998)

SUMMARY Part of T=0 correlations in N~Z nuclei is definitely beyond standard formulation of mean-field (Wigner energy) Adding T=0 pairing helps but cannot solve the problem of the Wigner energy (symmetry energy) in N~Z nuclei which seems to be beyond mean-field There is no convincing arguments for coherency of the T=0 phase Theoretical treatment of T=1 states in e-e nuclei and T=0 states o-o nuclei requires angular momentum and isospin projections

Independent least-square fits of: the Wigner energy strength: aw|N-Z|/Aa the symmetry energy strength: as(N-Z)2/Aa 4asT(T+x); x=aw/2as a aw 2as sn-1 x (*) (**) 0.95 39 0.196 31 0.106 1.26 1/2 8 0.239 6 0.153 1.33 2/3 14 0.213 11 0.125 1.27 1 47 0.196 38 0.107 1.24 Głowacz, Satuła, Wyss, J. Phys. A19, 33 (2004) very consistent with: Janecke, Nucl. Phys. (1965) 97 Fit includes N~Z nuclei with: Z>10; 1<Tz<3 excluding odd-odd Tz=1 nuclei - - - (*) See: Satuła et al. Phys. Lett. B407 (1997) 103 (**) Based on double-difference formula: J.-Y Zhang et al. Phys. Lett. B227 (1989) 1