A Virtual Trip to the Black Hole Computer Simulation of Strong Gravitional Lensing in Schwarzschild-de Sitter Spacetimes Pavel Bakala Petr Čermák, Kamila.

Slides:



Advertisements
Similar presentations
Trip to a Black Hole I by Robert J. Nemiroff Michigan Tech
Advertisements

General Relativity Physics Honours 2009 Prof. Geraint F. Lewis Rm 560, A29 Lecture Notes 4.
Neutron Stars and Black Holes Please press “1” to test your transmitter.
Neutron Stars and Black Holes
Ch 9.1: The Phase Plane: Linear Systems
Understanding interferometric visibility functions J. Meisner.
ASYMPTOTIC STRUCTURE IN HIGHER DIMENSIONS AND ITS CLASSIFICATION KENTARO TANABE (UNIVERSITY OF BARCELONA) based on KT, Kinoshita and Shiromizu PRD
General Relativity Physics Honours 2008 A/Prof. Geraint F. Lewis Rm 560, A29 Lecture Notes 3.
Scott Johnson, John Rossman, Charles Harnden, Rob Schweitzer, Scott Schlef Department of Physics, Bridgewater State College // Bridgewater MA, Mentor:
The attractor mechanism, C-functions and aspects of holography in Lovelock gravity Mohamed M. Anber November HET bag-lunch.
General Relativity Physics Honours 2006 A/Prof. Geraint F. Lewis Rm 557, A29 Lecture Notes 6.
Pavel Bakala Eva Šrámková, Gabriel Török and Zdeněk Stuchlík Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo.
General Relativity Physics Honours 2007 A/Prof. Geraint F. Lewis Rm 557, A29 Lecture Notes 8.
General Relativity Physics Honours 2006 A/Prof. Geraint F. Lewis Rm 557, A29 Lecture Notes 5.
General Relativity Physics Honours 2007 A/Prof. Geraint F. Lewis Rm 557, A29 Lecture Notes 4.
Connecting Accretion Disk Simulations with Observations Part II: Ray Tracing Jason Dexter 10/9/2008.
General Relativity Physics Honours 2007 A/Prof. Geraint F. Lewis Rm 557, A29 Lecture Notes 7.
The 2d gravity coupled to a dilaton field with the action This action ( CGHS ) arises in a low-energy asymptotic of string theory models and in certain.
Ch. 5 - Basic Definitions Specific intensity/mean intensity Flux
Announcements Exam 4 is Monday May 4. Tentatively will cover Chapters 9, 10, 11 & 12 Sample questions will be posted soon Observing Night tomorrow night.
1 Chapter 34 One of the most important uses of the basic laws governing light is the production of images. Images are critical to a variety of fields and.
Gravity & orbits. Isaac Newton ( ) developed a mathematical model of Gravity which predicted the elliptical orbits proposed by Kepler Semi-major.
General Relativity Physics Honours 2005 Dr Geraint F. Lewis Rm 557, A29
Chapter 26 Relativity. General Physics Relativity II Sections 5–7.
Quadrupole moments of neutron stars and strange stars Martin Urbanec, John C. Miller, Zdenek Stuchlík Institute of Physics, Silesian University in Opava,
Forming Nonsingular Black Holes from Dust Collapse by R. Maier (Centro Brasileiro de Pesquisas Físicas-Rio de Janeiro) I. Damião Soares (Centro Brasileiro.
Black Holes Escape velocity Event horizon Black hole parameters Falling into a black hole.
International Workshop on Astronomical X-Ray Optics Fingerprints of Superspinars in Astrophysical Phenomena Zdeněk Stuchlík and Jan Schee Institute of.
The Two-Body Problem. The two-body problem The two-body problem: two point objects in 3D interacting with each other (closed system) Interaction between.
Pavel Bakala Martin Blaschke, Martin Urbanec, Gabriel Török and Eva Šrámková Institute of Physics, Faculty of Philosophy and Science, Silesian University.
4. General Relativity and Gravitation 4.1. The Principle of Equivalence 4.2. Gravitational Forces 4.3. The Field Equations of General Relativity 4.4. The.
Black Holes Formation Spacetime Curved spacetime Event horizon Seeing black holes Demo: 1L Gravity Well - Black Hole.
KERR SUPERSPINARS AS AN ALTERNATIVE TO BLACK HOLES Zdeněk Stuchlík Institute of Physics, Faculty of Philosophy and Science, Silesian university in Opava.
14. Mappings by the exponential function We shall introduce and develop properties of a number of elementary functions which do not involve polynomials.
General Relativity Physics Honours 2005 Dr Geraint F. Lewis Rm 557, A29
Lecture 27: Black Holes. Stellar Corpses: white dwarfs white dwarfs  collapsed cores of low-mass stars  supported by electron degeneracy  white dwarf.
MEASUREMENT OF BRANY BLACK HOLE PARAMETERS IN THE FRAMEWORK OF THE ORBITAL RESONANCE MODEL OF QPOs MEASUREMENT OF BRANY BLACK HOLE PARAMETERS IN THE FRAMEWORK.
Analysis of half-spin particle motion in static Reissner-Nordström and Schwarzschild fields М.V.Gorbatenko, V.P.Neznamov, Е.Yu.Popov (DSPIN 2015), Dubna,
Pavel Bakala Martin, Urbanec, Eva Šrámková, Gabriel Török and Zdeněk Stuchlík Institute of Physics, Faculty of Philosophy and Science, Silesian University.
Pavel Bakala Eva Šrámková, Gabriel Török and Zdeněk Stuchlík Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo.
Gravitational and electromagnetic solitons Stationary axisymmetric solitons; soliton waves Monodromy transform approach Solutions for black holes in the.
Equilibrium configurations of perfect fluid in Reissner-Nordström de Sitter spacetimes Hana Kučáková, Zdeněk Stuchlík, Petr Slaný Institute of Physics,
Equilibrium configurations of perfect fluid in Reissner-Nordström-anti-de Sitter spacetimes Hana Kučáková, Zdeněk Stuchlík, Petr Slaný Institute of Physics,
Equilibrium configurations of perfect fluid in Reissner-Nordström-(anti-)de Sitter spacetimes Hana Kučáková, Zdeněk Stuchlík & Petr Slaný MG12 Paris,
Principle of Equivalence: Einstein 1907 Box stationary in gravity field Box falling freely Box accelerates in empty space Box moves through space at constant.
Influence of dark energy on gravitational lensing Kabita Sarkar 1, Arunava Bhadra 2 1 Salesian College, Siliguri Campus, India High Energy Cosmic.
10/5/2004New Windows on the Universe Jan Kuijpers Part 1: Gravitation & relativityPart 1: Gravitation & relativity J.A. Peacock, Cosmological Physics,
Pavel Bakala Gabriel Török, Zdeněk Stuchlík, Eva Šrámková Institute of Physics Faculty of Philosophy and Science Silesian University in Opava Czech Republic.
A Virtual Trip to the Black Hole Computer Simulation of Strong Gravitional Lensing in Schwarzschild-de Sitter Spacetimes Pavel Bakala Petr Čermák, Stanislav.
Pavel Bakala,Gabriel Török, Zdeněk Stuchlík and Eva Šrámková Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo.
General Relativity Physics Honours 2008 A/Prof. Geraint F. Lewis Rm 560, A29 Lecture Notes 9.
Gabriel Török, P.Bakala, E. Šrámková, Z. Stuchlík, M. Urbanec Mass and spin of NS implied by models of kHz QPOs *Institute of Physics, Faculty of Philosophy.
Gabriel Török* On orbital models of kHz QPOs in neutron star binaries *Institute of Physics, Faculty of Philosophy and Science, Silesian University in.
Announcements Homework: Chapter 2 handout # 1, 2, 3, 4 & 7 Will not be collected but expect to see problems from it on the exam. Solutions are posted.
INFLUENCE OF COSMOLOGICAL CONSTANT ON PARTICLE DYNAMICS NEAR COMPACT OBJECTS Zdeněk Stuchlík, Petr Slaný, Jiří Kovář and Stanislav Hledík Institute of.
Gravitational collapse of massless scalar field Bin Wang Shanghai Jiao Tong University.
Black Hole Universe -BH in an expanding box- Yoo, Chulmoon ( YITP) Hiroyuki Abe (Osaka City Univ.) Ken-ichi Nakao (Osaka City Univ.) Yohsuke Takamori (Osaka.
The Meaning of Einstein’s Equation*
A Virtual Trip to the Black Hole Computer Simulation of Strong Lensing near Compact Objects RAGTIME 2005 Pavel Bakala Petr Čermák, Kamila Truparová, Stanislav.
Announcements Grades for third exam are now available on WebCT Observing this week and next week counts on the third exam. Please print out the observing.
Gravitational Self-force on a Particle in the Schwarzschild background Hiroyuki Nakano (Osaka City) Norichika Sago (Osaka) Wataru Hikida (Kyoto, YITP)
General Relativity Physics Honours 2009 Prof. Geraint F. Lewis Rm 560, A29 Lecture Notes 3.
ON EXISTENCE OF HALO ORBITS IN COMPACT OBJECTS SPACETIMES Jiří Kovář Zdeněk Stuchlík & Vladimír Karas Institute of Physics Silesian University in Opava.
Genetic Selection of Neutron Star Structure Matching the X-Ray Observations Speaker: Petr Cermak The Institute of Computer Science Silesian University.
Chapter 14: Chapter 14: Black Holes: Matters of Gravity.
The Rotating Black Hole
Global Defects near Black Holes
Local Conservation Law and Dark Radiation in Brane Models
Black Holes Escape velocity Event horizon Black hole parameters
Graviton Emission in The Bulk from a Higher Dimensional Black Hole
Presentation transcript:

A Virtual Trip to the Black Hole Computer Simulation of Strong Gravitional Lensing in Schwarzschild-de Sitter Spacetimes Pavel Bakala Petr Čermák, Kamila Truparová, Stanislav Hledík and Zdeněk Stuchlík Institute of Physics Faculty of Philosophy and Science Silesian University in Opava Czech Republic Eleventh Marcel Grossmann Meeting on General Relativity This presentation can be downloaded from in section Newswww.physics.cz/research

Motivation This work is devoted to the following “virtual astronomy” problem: What is the view of distant universe for an observer (static or radially falling ) in the vicinity of the black hole (neutron star) like? Nowadays, this problem can be hardly tested by real astronomy, however, it gives an impressive illustration of differences between optics in a strong gravity field and between flat spacetime optics as we experience it in our everyday life. We developed a computer code for fully realistic modelling and simulation of optical projection in a strong, spherically symmetric gravitational field. Theoretical analysis of optical projection for an observer in the vicinity of a Schwarzschild black hole was done by Cunningham (1975) an Nemiroff (1993). This analysis was extended to spacetimes with repulsive cosmological constant (Schwarzschild – de Sitter spacetimes). In order to obtain whole optical projection we considered all direct and undirect rays - null geodesics - connecting sources and the observer. The simulation takes care of frequency shift effects (blueshift, redshift), as well as the amplification of intensity.

Formulation of the problem Schwarzschild – de Sitter metric Black hole horizon Cosmological horizon Static radius Critical value of cosm. constant

Formulation of the problem The spacetime has a spherical symmetry, so we can consider photon motion in equatorial plane ( θ=π/2 ) only. Constants of motion are time and angle covariant componets of 4- momentum of photons. Impact parameter Contravariant components of photons 4-momentum Direction of 4-momentum depends on an impact parameter b only, so the photon path (a null geodesic) is described by this impact parameter and boundary conditions.

Formulation of the problem There arises an infinite number of images generated by geodesics orbiting around the black hole in both directions. In order to calculate angle coordinates of images, we need impact parameter b as a function of Δφ along the geodesic line „Binet“ formula for Schwarzschild – de Sitter spacetime Condition of photon motion

Consequeces of photons motion condition Existence of maximal impact parameter for observers above the circular photon orbit. Geodesics with b>b max never achieve r obs. Existence of limit impact parameter and location of the circular photon orbit Turn points for geodesics with b>b lim. Nemiroff (1993) for Schwarzschild spacetime Geodesics have b<b lim for observers under the circular photon orbit. (b≤b lim for observers on the circular photon orbit).

Three kinds of null geodesics Geodesics with b<b lim, photons end in the singularity. Geodesics with b>b lim and |Δφ(u obs )| b lim and |Δφ(u obs )| < |Δφ(u turn )|, the observer is ahead of the turn point. Geodesics with b>b lim a |Δφ(u obs )|> |Δφ(u turn )|, the observer is beyond the turn point. These integral equations express Δφ along the photon path as a function:

Starting point of the numerical solution We can rewrite the final equation for observers on polar axis in a following way : Final equation expresses b as an implicit function of the boundary conditions and cosmological constant. However, the integrals have no simple analytic solution and there is no explicit form of the function. Numerical methods can be used to solve the final equation. We used Romberg integration and trivial bisection method. Faster root finding methods (e.g. Newton-Raphson method) may unfortunately fail here. Parameter k takes values of 0,1,2…∞ for geodesics orbiting clokwise, -1,-2, …∞ for geodesics orbiting counter-clokwise. Infinite value of k corresponds to a photon capture on the circular photon orbit.

Solution for static observers In order to calculate direct measured quantities, one has to transform the 4-momentum into local coordinate system of the static observer. Local components of 4-momentum for the static observer in equatorial plane can be obtained using appropriate tetrad of 1-form ω (α) Transformation to a local coordinate system

Solution for static observers As 4-momentum of photons is a null 4-vector, using local components the angle coordinate of the image can be expressed as: π must be added to α stat for counter-clockwise orbiting geodesics (Δφ>0). Frequency shift is given by the ratio of local time 4-momentum components of the source and the observer. In case of static sources and static observers, the frequency shift can be expressed as :

Solution for static observers above the photon orbit Impact parameter b increases according to Δ φ up to b max,, after which it decreases and asymptotically aproaches to b lim from above. The angle α stat monotonically increases according to Δ φ up to its maximum value, which defining the black region on the observer sky. The size of black region expands with decreasing radial coordinate of observer but decreases with increasing value of cosmologival constant The size of black region expands with decreasing radial coordinate of observer but decreases with increasing value of cosmologival constant. Δφ at Impact parameter as function of Δφ at r obs =6M Δφ at Directional angle as function of Δφ at r obs =6M

Simulation : Saturn behind the black hole, r obs =20M Nondistorted view

Simulation : Saturn behind the black hole, r obs =20M

Simulation : Saturn behind the black hole, r obs =5M View of outward direction Some parts of image are moving into an opposite hemisphere of observers sky Blueshift

Solution for static observers under the photon orbit Solution for static observers under the photon orbit Impact parameter b monotonically increases with Δ φ and, asymptotically nears to b lim from below. The angle α stat monotonically increases with Δ φ up to its maximum value, which defines a black region on the observer sky. The black region occupies a significant part of the observer sky now. The size of black region now expands with increasing value of cosmologival constant The angle α stat monotonically increases with Δ φ up to its maximum value, which defines a black region on the observer sky. The black region occupies a significant part of the observer sky now. The size of black region now expands with increasing value of cosmologival constant. In case of an observer near the event horizon, the whole universe is displayed as a small spot around the intersection point of the observer sky and the polar axis. Δφ at Impact parameter as function of Δφ at r obs =2.7M Δφ at Directional angle as function of Δφ at r obs =2.7M

Simulation : Saturn behind the black hole, r obs =3M Observer on the photon orbit would be blinded and burned by captured photons. Outward direction view, whole image is moving into opposite hemisphere of observers sky Strong blueshift Black region occupies more than one half of the observers sky.

Simulation : Saturn behind the black hole, r obs =2.1M The observer is very close to the event horizon. Outward direction view Most of the visible radiation is blueshifted into UV range. Black region occupies a major part of observer sky, all images of an object in the whole universe are displayed on a small and bright spot.

Simulation : Influence of the cosmological constant M31, r obs =27M, Λ=0 M31, r obs =27M, Λ=10 -5 Sombrero, r obs =25M, Λ=0 Sombrero, r obs =25M, Λ=10 -5 Sombrero, r obs =5M, Λ=0 Sombrero, r obs =5M, Λ=10 -5

Behavior Behavior of angular size depend of the position of the observer. From the observers above the photon orbit angular size is anticorrelated with cosmological constant, the largest angular size in given radius matches pure Schwarzschild case. Under the photon orbit dependency on cosmological constant has opossite behavior. For observers just on the photon orbit the angular size of the black hole is independent on the cosmological constant and it is allways π, one half ( all inward hemisphere ) of the observer sky. From observers under and on the photon orbit angular size is given as Apparent angular size of the black hole as a function of the cosmological constant Apparent angular A size can be considered as border of the black region of the static observer´s sky, thus is given by maximum value of the angle α stat. From observers above the photon orbit angular size is given as

Apparent angular size of the black hole as a function of the cosmological constant Zoom near event horizons Zoom near the photon orbit

Simulation : Free-falling observer from infinity to the event horizon in pure Schwarzschid case. The virtual black hole is between observer and Galaxy M104 „Sombrero“. Nondistorted image of M104 r obs =100M r obs =40M r obs =50M r obs =15M

Simulation : Observer falling from 10M to the rest on the event horizon Galaxy „Sombrero“ is in the observer sky.

Computer implementation The code BHC_IMPACT is developed in C language, compilated by GCC and MPICC compilers, OS LINUX. Libraries NUMERICAL RECIPES, MPI and LIGHTSPEED! were used. We used IBM BladeCenter and SGI ALTIX 350 with 8 Itanium II CPUs for simulation run. One bitmap image of nondistorted objects is the input for the simulation. We assume that it is projection of part of the observer sky in direction of the black hole in flat spacetime. Two bitmap images are generated as an output. The first image is the view in direction of the black hole, the second one is the view in the opposite direction. Only the first three images are generated by the simulation. The intensity of higher order images rapidly decreases and their positions merge with the second Einstein ring. However, the intensity ratio between images with different orders is unrealistic. Computer displays have not required bright Only the first three images are generated by the simulation. The intensity of higher order images rapidly decreases and their positions merge with the second Einstein ring. However, the intensity ratio between images with different orders is unrealistic. Computer displays have not required bright resolution.

End This presentation can be downloaded from in section Newswww.physics.cz/research