Max-Planck-Institut für Plasmaphysik, EURATOM Association Different numerical approaches to 3D transport modelling of fusion devices Alexander Kalentyev.

Slides:



Advertisements
Similar presentations
Stable Fluids A paper by Jos Stam.
Advertisements

Steady-state heat conduction on triangulated planar domain May, 2002
Introduction to Plasma-Surface Interactions Lecture 6 Divertors.
17. April 2015 Mitglied der Helmholtz-Gemeinschaft Application of a multiscale transport model for magnetized plasmas in cylindrical configuration Workshop.
Simulations of the core/SOL transition of a tokamak plasma Frederic Schwander,Ph. Ghendrih, Y. Sarazin IRFM/CEA Cadarache G. Ciraolo, E. Serre, L. Isoardi,
6th Japan Korea workshop July 2011, NIFS, Toki-city Japan Edge impurity transport study in stochastic layer of LHD and scrape-off layer of HL-2A.
The analysis of the two dimensional subsonic flow over a NACA 0012 airfoil using OpenFoam is presented. 1) Create the geometry and the flap Sequence of.
MHD Concepts and Equations Handout – Walk-through.
High performance flow simulation in discrete fracture networks and heterogeneous porous media Jocelyne Erhel INRIA Rennes Jean-Raynald de Dreuzy Geosciences.
Momentum transport and flow shear suppression of turbulence in tokamaks Michael Barnes University of Oxford Culham Centre for Fusion Energy Michael Barnes.
Peyman Mostaghimi, Martin Blunt, Branko Bijeljic 11 th January 2010, Pore-scale project meeting Direct Numerical Simulation of Transport Phenomena on Pore-space.
1 Internal Seminar, November 14 th Effects of non conformal mesh on LES S. Rolfo The University of Manchester, M60 1QD, UK School of Mechanical,
Edge plasma physics – a bridge between several disciplines Ralf Schneider IPP-Teilinstitut Greifswald, EURATOM Association, Wendelsteinstraße 1, D
16/12/ Texture alignment in simple shear Hans Mühlhaus,Frederic Dufour and Louis Moresi.
IPP Stellarator Reactor perspective T. Andreeva, C.D. Beidler, E. Harmeyer, F. Herrnegger, Yu. Igitkhanov J. Kisslinger, H. Wobig O U T L I N E Helias.
A TWO-FLUID NUMERICAL MODEL OF THE LIMPET OWC CG Mingham, L Qian, DM Causon and DM Ingram Centre for Mathematical Modelling and Flow Analysis Manchester.
© 2011 Autodesk Freely licensed for use by educational institutions. Reuse and changes require a note indicating that content has been modified from the.
Model prediction of impurity retention in ergodic layer and comparison with edge carbon emission in LHD (Impurity retention in the ergodic layer of LHD)
Introduction to the Particle In Cell Scheme for Gyrokinetic Plasma Simulation in Tokamak a Korea National Fusion Research Institute b Courant Institute,
CENTRAL AEROHYDRODYNAMIC INSTITUTE named after Prof. N.E. Zhukovsky (TsAGI) Multigrid accelerated numerical methods based on implicit scheme for moving.
Challenges in edge modeling IPP-Teilinstitut Greifswald, EURATOM Association, Wendelsteinstraße 1, D Greifswald, Germany Outline: 1. Motivation 2.
ParCFD Parallel computation of pollutant dispersion in industrial sites Julien Montagnier Marc Buffat David Guibert.
A conservative FE-discretisation of the Navier-Stokes equation JASS 2005, St. Petersburg Thomas Satzger.
A particle-gridless hybrid methods for incompressible flows
第16回 若手科学者によるプラズマ研究会 JAEA
Introduction 1. Similarity 1.1. Mechanism and mathematical description 1.2. Generalized variables 1.3. Qualitative analysis 1.4. Generalized individual.
A chaotic collection of thoughts on stochastic transport what are the issues that M3D must consider to accurately determine heat transport which analytical.
Transport of deuterium - tritium neutrals in ITER divertor M. Z. Tokar and V.Kotov Plasma and neutral gas in ITER divertor will be mixed of deuterium and.
Upscaling of Transport Processes in Porous Media with Biofilms in Non-Equilibrium Conditions L. Orgogozo 1, F. Golfier 1, M.A. Buès 1, B. Wood 2, M. Quintard.
1 Complex Images k’k’ k”k” k0k0 -k0-k0 branch cut   k 0 pole C1C1 C0C0 from the Sommerfeld identity, the complex exponentials must be a function.
14 Oct. 2009, S. Masuzaki 1/18 Edge Heat Transport in the Helical Divertor Configuration in LHD S. Masuzaki, M. Kobayashi, T. Murase, T. Morisaki, N. Ohyabu,
DIII-D SHOT #87009 Observes a Plasma Disruption During Neutral Beam Heating At High Plasma Beta Callen et.al, Phys. Plasmas 6, 2963 (1999) Rapid loss of.
Silesian University of Technology in Gliwice Inverse approach for identification of the shrinkage gap thermal resistance in continuous casting of metals.
M. Onofri, F. Malara, P. Veltri Compressible magnetohydrodynamics simulations of the RFP with anisotropic thermal conductivity Dipartimento di Fisica,
STUDIES OF NONLINEAR RESISTIVE AND EXTENDED MHD IN ADVANCED TOKAMAKS USING THE NIMROD CODE D. D. Schnack*, T. A. Gianakon**, S. E. Kruger*, and A. Tarditi*
Perpetual Visualization of Particle Motion and Fluid Flow Presented by Tsui Mei Chang.
Mochalskyy Serhiy NI modeling workshop, Chiba, Japan, 2013 Recent state and progress in negative ion modeling by means ONIX code Mochalskyy Serhiy 1, Dirk.
of magnetized discharge plasmas: fluid electrons + particle ions
Role of thermal instabilities and anomalous transport in the density limit M.Z.Tokar, F.A.Kelly, Y.Liang, X.Loozen Institut für Plasmaphysik, Forschungszentrum.
18th International Spherical Torus Workshop, Princeton, November 2015 Magnetic Configurations  Three comparative configurations:  Standard Divertor (+QF)
Ergodic heat transport analysis in non-aligned coordinate systems S. Günter, K. Lackner, Q. Yu IPP Garching Problems with non-aligned coordinates? Description.
53rd Annual Meeting of the Division of Plasma Physics, November , 2011, Salt Lake City, Utah When the total flow will move approximately along the.
Presented by Yuji NAKAMURA at US-Japan JIFT Workshop “Theory-Based Modeling and Integrated Simulation of Burning Plasmas” and 21COE Workshop “Plasma Theory”
Lecture Objectives: - Numerics. Finite Volume Method - Conservation of  for the finite volume w e w e l h n s P E W xx xx xx - Finite volume.
1 LES of Turbulent Flows: Lecture 7 (ME EN ) Prof. Rob Stoll Department of Mechanical Engineering University of Utah Spring 2011.
2014/03/06 那珂核融合研究所 第 17 回若手科学者によるプラズマ研究会 SOL-divertor plasma simulations with virtual divertor model Satoshi Togo, Tomonori Takizuka a, Makoto Nakamura.
NIMROD Simulations of a DIII-D Plasma Disruption S. Kruger, D. Schnack (SAIC) April 27, 2004 Sherwood Fusion Theory Meeting, Missoula, MT.
Member of the Helmholtz Association Meike Clever | Institute of Energy Research – Plasma Physics | Association EURATOM – FZJ Graduiertenkolleg 1203 Dynamics.
Computational Fluid Dynamics Lecture II Numerical Methods and Criteria for CFD Dr. Ugur GUVEN Professor of Aerospace Engineering.
U NIVERSITY OF S CIENCE AND T ECHNOLOGY OF C HINA Influence of ion orbit width on threshold of neoclassical tearing modes Huishan Cai 1, Ding Li 2, Jintao.
______ APPLICATION TO WAKEFIELD ACCELERATORS EAAC Workshop – Elba – June juillet 2016 | PAGE 1 CEA | 10 AVRIL 2012 X. Davoine 1, R. Lehe 2, A.
Unstructured Meshing Tools for Fusion Plasma Simulations
Mechanisms for losses during Edge Localised modes (ELMs)
Chamber Dynamic Response Modeling
T. Agoh (KEK) Introduction CSR emitted in wiggler
A TWO-FLUID NUMERICAL MODEL OF THE LIMPET OWC
Stellarator Divertor Design and Optimization with NCSX Examples
K. Galsgaard1, A.L. Haynes2, C.E. Parnell2
Finite difference code for 3D edge modelling
Master Thesis Lefteris Benos
E3D: status report and application to DIII-D
Gyrofluid Turbulence Modeling of the Linear
Convergence in Computational Science
L Ge, L Lee, A. Candel, C Ng, K Ko, SLAC
AIAA OBSERVATIONS ON CFD SIMULATION UNCERTAINITIES
Convergence in Numerical Science
AIAA OBSERVATIONS ON CFD SIMULATION UNCERTAINTIES
Mikhail Z. Tokar and Mikhail Koltunov
V. Rozhansky1, E. Kaveeva1, I. Veselova1, S. Voskoboynikov1, D
Presentation transcript:

Max-Planck-Institut für Plasmaphysik, EURATOM Association Different numerical approaches to 3D transport modelling of fusion devices Alexander Kalentyev Max-Planck Institut für Plasmaphysik, EURATOM Association Stellarator Theory Division

Max-Planck-Institut für Plasmaphysik, EURATOM Association Introduction 3D effects: In tokamaks near divertor plates stellarators are intrinsically 3D Ergodicity: Perturbation coils in tokamaks (TEXTOR-DED, DIII-D) In stellarators ergodic region always present

Max-Planck-Institut für Plasmaphysik, EURATOM Association Transport equations

Max-Planck-Institut für Plasmaphysik, EURATOM Association Finite volume approach (BoRiS) plasma core (non- ergodic) ergodic region island (non- ergodic) Divertors Generalized Newton solver Special application - W7-X using Boozer coordinates for 7 separate domains

Max-Planck-Institut für Plasmaphysik, EURATOM Association Flexibility of BoRiS Solution of the Navier-Stokes equations for a flow in a square cavity Predicted streamlines Influence of the under-relaxation parameters on convergence rate Convergence region Peric et al. 1988

Scrape Off Layer Plasma core Wall Parallel direction Radial direction Ergodic region Enhancement of radial transport due to contribution from parallel transport Rechester Rosenbluth, Physical Review Letters, 1978 Electron temperature r Max-Planck-Institut für Plasmaphysik, EURATOM Association Transport in an ergodic region

Kolmogorov length L K is a measure of field line ergodicity exponential divergence Typical value in W7-X : L K = 10 – 30 m Max-Planck-Institut für Plasmaphysik, EURATOM Association Kolmogorov length

central cut backward cut forward cut x1x1 x2x2 x3x3 One coordinate aligned with the magnetic field to minimize numerical diffusion Area is conserved Use a full metric tensor Local system shorter than Kolmogorov length to handle ergodicity Max-Planck-Institut für Plasmaphysik, EURATOM Association Local magnetic coordinates

Max-Planck-Institut für Plasmaphysik, EURATOM Association Interface problem 1) Optimized mesh (finite-difference scheme)  Problem: numerical diffusion induced by interpolation on the interface

Max-Planck-Institut für Plasmaphysik, EURATOM Association Monte-Carlo 1st Order Algorithm Random process random step Realization Diffusion Convection Monte-Carlo combined with Interpolated Cell Mapping High accuracy transformation of the perpendicular coordinates of a particle (mapping between cuts) needed!

Max-Planck-Institut für Plasmaphysik, EURATOM Association Finite Difference Approach Fieldline tracing Triangulation Metric coefficients Transport code Grid Neighborhoods Temperature solution Magnetic field Linearization matrix Mesh optimization

Max-Planck-Institut für Plasmaphysik, EURATOM Association “Semi-implicit” scheme Implicit scheme „Semi-implicit“ scheme Memory usage: 7 times less Solver: 50 times faster

Max-Planck-Institut für Plasmaphysik, EURATOM Association Results

Max-Planck-Institut für Plasmaphysik, EURATOM Association Conclusion and Future Work Conclusion Comparisons between three different codes for a W7-X geometry were done. Future Work To complete the physics (including all transport equations). To compare results in more realistic cases (including target plates, finite beta).

Max-Planck-Institut für Plasmaphysik, EURATOM Association Conduction-convection Convection-conduction equation for a „fluid quantity“ f: x 1 =const x 2 =const x3x3 reference cut „Magnetic“ coordinate system: - contribution from D || in D 33 only Metric tensor: determined by field line tracing

Max-Planck-Institut für Plasmaphysik, EURATOM Association Monte-Carlo 1 st Order Algorithm Fokker-Planck Eq. for pseudoscalar density of test particles, Random process Requirement Realization diffusion, convectionsink, source random step independent random numbers physics: diffusion and convection of the “fluid quantity” Higher order schemes in 3D get much too complex Interpretation as probabilistic approximation of Green functions possible