Lena F. Elmuti, Daniel A. Obenchain, Don L. Jurkowski, Cori L. Christenholz, Amelia J. Sanders, Rebecca A. Peebles, Sean A. Peebles Department of Chemistry,

Slides:



Advertisements
Similar presentations
Laboratory Spectrum of the trans-gauche Conformer of Ethyl Formate Justin L. Neill, Matt T. Muckle, Daniel P. Zaleski, Brooks H. Pate Department of Chemistry,
Advertisements

68th OSU International Symposium on Molecular Spectroscopy TH08
Microsolvation of  -propiolactone as revealed by Chirped-Pulse Fourier Transform Microwave Spectroscopy Justin L. Neill, Matt T. Muckle, Daniel P. Zaleski,
Fourier transform microwave spectrum of isobutyl mercaptan Kanagawa Institute of Technology 1 and The Graduate University for Advanced Studies 2 Yugo Tanaka,
CHIRPED-PULSE FOURIER-TRANSFORM MICROWAVE SPECTROSCOPY OF THE PROTOTYPICAL C-H…π INTERACTION: THE BENZENE…ACETYLENE WEAKLY BOUND DIMER Nathan W. Ulrich,
Measurement of the Vibrational Population Distribution of Barium Sulfide, Seeded in an Argon Supersonic Expansion, Following Production Through the Reaction.
Room-Temperature Chirped-Pulse Microwave Spectrum of 2-Methylfuran
Construction of a 480 MHz Chirped-Pulse Fourier-Transform Microwave Spectrometer: The Rotational Spectra of Divinyl Silane and 3,3-Difluoropentane Daniel.
Galen Sedo, Jamie L. Doran, Shenghai Wu, Kenneth R. Leopold Department of Chemistry, University of Minnesota A Microwave Determination of the Barrier to.
Chirped Pulse Fourier Transform Microwave Spectroscopy of SnCl Garry S. Grubbs II and Stephen A. Cooke Department of Chemistry, University of North Texas,
Microwave Spectroscopy of Seven Conformers of 1,2-Propanediol Justin L. Neill, Matt T. Muckle, and Brooks H. Pate, Department of Chemistry, University.
OSU – June – SGK1 STEVE KUKOLICH, ERIK MITCHELL ╬, SPENCER CAREY, MING SUN, AND BRYAN SARGUS, Dept. of Chemistry and Biochemistry, The University.
Pure Rotational and Ultraviolet-Microwave Double Resonance Spectroscopy of Two Water Complexes of para-methoxyphenylethylamine (pMPEA) Justin L. Neill,
Strategies for Complex Mixture Analysis in Broadband Microwave Spectroscopy Amanda L. Steber, Justin L. Neill, Matt T. Muckle, and Brooks H. Pate Department.
Water clusters observed by chirped-pulse rotational spectroscopy: Structures and hydrogen bonding Cristobal Perez, Matt T. Muckle, Daniel P. Zaleski, Nathan.
1 Broadband Chirped-Pulse Fourier- Transform Microwave (CP-FTMW) Spectroscopic Investigation of the Structures of Three Diethylsilane Conformers Amanda.
Observation of the weakly bound (HCl) 2 H 2 O cluster by chirped-pulse FTMW spectroscopy Zbigniew Kisiel, a Alberto Lesarri, b Justin Neill, c Matt Muckle,
Gas Phase Conformational Distributions
DANIEL P. ZALESKI, JUSTIN L. NEILL, MATTHEW T. MUCKLE, AMANDA L. STEBER, NATHAN A. SEIFERT, AND BROOKS H. PATE Department of Chemistry, University of Virginia,
DANIEL P. ZALESKI, JUSTIN L. NEILL, AND BROOKS H. PATE Department of Chemistry, University of Virginia, McCormick Rd., P.O. Box , Charlottesville,
Microwave Spectrum of Hydrogen Bonded Hexafluoroisopropanol  water Complex Abhishek Shahi Prof. E. Arunan Group Department of Inorganic and Physical.
The Low Frequency Broadband Fourier Transform Microwave Spectroscopy of Hexafluoropropylene Oxide, CF 3 CFOCF 2 Lu Kang 1, Steven T. Shipman 2, Justin.
Microwave Spectroscopic Investigations of the C—H…  Containing Complexes CH 2 F 2 …Propyne and CH 2 ClF…Propyne Rebecca A. Peebles, Sean A. Peebles, Cori.
Microwave Spectra and Structures of H 2 S-CuCl and H 2 O-CuCl Nicholas R. Walker, Felicity J. Roberts, Susanna L. Stephens, David Wheatley, Anthony C.
Chirped-pulse, FTMW spectroscopy of the lactic acid-H 2 O system Zbigniew Kisiel, a Ewa Białkowska-Jaworska, a Daniel P. Zaleski, b Justin L. Neill, b.
Rotational Spectra and Structure of Phenylacetylene-Water Complex and Phenylacetylene-H 2 S (preliminary) Mausumi Goswami, L. Narasimhan, S. T. Manju and.
Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.
Microwave Spectrum and Molecular Structure of the Argon-(E )-1-Chloro-1,2-Difluoroethylene Complex Mark D. Marshall, Helen O. Leung, Hannah Tandon, Joseph.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
RANIL M. GURUSINGHE, MICHAEL TUBERGEN Department of Chemistry and Biochemistry, Kent State University, Kent, OH. RANIL M. GURUSINGHE, MICHAEL TUBERGEN.
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
Analysis of interactions between excited vibrational states in the FASSST rotational spectrum of S(CN) 2 Zbigniew Kisiel, Orest Dorosh Institute of Physics,
Molecular Stark Effect Measurements in Broadband Chirped-Pulse Fourier Transform Microwave (CP-FTMW) Spectrometers Leonardo Alvarez-Valtierra, 1 Steven.
THE MICROWAVE STUDIES OF GUAIACOL (2-METHOXYPHENOL), ITS ISOTOPOLOGUES & VAN DER WAALS COMPLEXES Ranil M. Gurusinghe, Ashley Fox and Michael J. Tubergen,
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
OSU RC10 Gas phase measurements and calculations of HCl and Ferrocene Adam Daly and Stephen Kukolich Chemistry Department University of Arizona.
Structure Determination of Two Stereoisomers of Sevoflurane Dimer by CP-FTMW Spectroscopy Nathan A. Seifert, Cristobal Perez, Daniel P. Zaleski, Justin.
Rotational spectroscopy of newly detected atmospheric ozone depleters: CF 3 CH 2 Cl, CF 3 CCl 3, and CFClCCl 3 Zbigniew Kisiel, Ewa Białkowska-Jaworska,
The Rotational Spectrum of N-Acetyl Phenylalanine Methyl Ester Measured with a Medium Bandwidth (100 MHz) Chirped-Pulse Fourier Transform Microwave Spectrometer.
Rotational Spectra Of Cyclopropylmethyl Germane And Cyclopropylmethyl Silane: Dipole Moment And Barrier To Methyl Group Rotation Rebecca A. Peebles, Sean.
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
The rotational spectra of helium- pyridine and hydrogen molecule- pyridine clusters Chakree Tanjaroon and Wolfgang Jäger.
Analysis of High Resolution Infrared Spectra of 1,1-Dichloroethylene in the 500 − 1000 cm −1 Range Rebecca A. Peebles, Sean A. Peebles Department of Chemistry.
S TRUCTURE D ETERMINATION AND CH···F I NTERACTIONS IN H 2 C=CHF···H 2 C=CF 2 B Y F OURIER - T RANSFORM M ICROWAVE S PECTROSCOPY Rachel E. Dorris, Rebecca.
Structural studies of CH 3 SiF 2 -X (X = NCO, Cl) by microwave spectroscopy Gamil A. Guirgis, Jason S. Overby College of Charleston Nathan A. Seifert,
1 -RJ16- NON COVALENT INTERACTIONS AND INTERNAL DYNAMICS IN ADDUCTS OF FREONS 69 th Symposium, Urbana-Champaign, June 16-20, 2012 Dipartimento di Chimica.
Infrared--Microwave Double Resonance Spectroscopy of Ar-DF (v = 0,1,2) Justin L. Neill, Gordon G. Brown, and Brooks H. Pate University of Virginia Department.
Broadband Microwave Spectroscopy to Study the Structure of Odorant Molecules and of Complexes in the Gas Phase Sabrina Zinn, Chris Medcraft, Thomas Betz,
Helen O. Leung, Mark D. Marshall & Joseph P. Messenger Department of Chemistry Amherst College Supported by the National Science Foundation.
CHIRPED PULSE AND CAVITY FT MICROWAVE SPECTROSCOPY OF THE HCOOH – N(CH 3 ) 3 WEAKLY BOUND COMPLEX Rebecca B. Mackenzie, Christopher T. Dewberry, and Kenneth.
Chirped-Pulse Microwave Spectroscopy in the Undergraduate Chemistry Curriculum Sydney Gaster, Taylor Hall, Sean Arnold, Deondre Parks, Gordon Brown Department.
Microwave and Ab Initio Investigations of CHCl 2 F-OCS and Related Hydrochlorofluorocarbon Complexes Rebecca A. Peebles and Amanda L. Steber Department.
Rotational Spectra of Adducts of Formaldehyde with Freons Qian Gou, 1 Gang Feng, 1 Luca Evangelisti, 1 Montserrat Vallejo-López, 2 Alberto Lesarri, 2 Walther.
SEEING IS BELIEVING: An 11 GHz molecular beam rotational spectrum (7.5 – 18.5 GHz) with 100 kHz resolution in 15  s measurement time Brian C. Dian, Kevin.
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H
ROTATIONAL SPECTROSCOPY OF THE METHYL GLYCIDATE-WATER COMPLEX
Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H
Mark D. Marshall, Helen O. Leung, Craig J. Nelson & Leonard H. Yoon
G. S. Grubbs II*, S. A. Cooke⧧, and Stewart E. Novick*,
The CP-FTMW Spectrum of Bromoperfluoroacetone
Aimee Bell, Omar Mahassneh, James Singer,
The Effect of Protic Acid Identity on the Structures of Complexes with Vinyl Chloride: Fourier Transform Microwave Spectroscopy and Molecular Structure.
Department of Chemistry
Microwave spectra of 1- and 2-bromobutane
G. S. Grubbs IIa, Derek S. Frankb, Daniel A. Obenchainb, S. A
Ashley M. Anderton, Cori L. Christenholz, Rachel E. Dorris, Rebecca A
Wei Lin, Anan Wu, Zin Lu, Daniel A. Obenchain, Stewart E. Novick
Michal M. Serafin, Sean A. Peebles
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
Presentation transcript:

Lena F. Elmuti, Daniel A. Obenchain, Don L. Jurkowski, Cori L. Christenholz, Amelia J. Sanders, Rebecca A. Peebles, Sean A. Peebles Department of Chemistry, Eastern Illinois University, 600 Lincoln Avenue, Charleston, IL Amanda L. Steber, Justin L. Neill, Brooks H. Pate Department of Chemistry, University of Virginia, McCormick Rd., PO Box , Charlottesville, VA 22904

Recent work in C-H···π Interactions ? ? CHClF 2 ···HCCH a CH 2 F 2 ···HCCH CH 2 ClF···HCCH a Elmuti, L. F.; Peebles, R. A.; Peebles, S. A.; Steber, A. L.; Neill, J. L.; Pate, B. H. J. Phys. Chem. Chem. Phys. 2011, DOI /c1cp20684b 2 Cl F 3.061(38) Å 2.730(6) Å Cl F

CH 2 ClF··· HCCH a b initio Structures  MP2/ G(2d,2p) level A /MHz5120 B /MHz1625 C /MHz1243 E ZPE /cm -1 0 A /MHz9652 B /MHz1204 C /MHz1078 E ZPE /cm a b Chlorine out structure Chlorine in structure b a 3

CH 2 ClF ··· HCCH Spectrum Measurement  CP-FTMW (University of Virginia) a GHz 350,000 averages 0.75% CH 2 ClF/ 1.0% HCCH diluted in He, P= 2 atm Fit using AABS package from Kisiel b and SPFIT/SPCAT software c  Less intense transitions and 13 C isotopologues measured on the Balle-Flygare cavity FTMW (Eastern Illinois University) d, e 1.0% CH 2 ClF/ 1.0% HCCH diluted in He/Ne (17.5%/82.5%) P= atm a Brown, G. G.; Dian, B. C.; Douglass, K. O.; Geyer, S. M.; Shipman, S. T.; Pate, B. H. Rev. Sci. Instrum. 2008, 79, b Kisiel, Z.; Pszczolkowski, L.; Medvedev I.R.; Winnewisser, M.; De Lucia, F. C.; Herbst, C. E. J. Mol. Spec. 2005, 233, c Pickett, H. M. J. Mol. Spec. 1991, 148, 371 d Balle, T. J.; Flygare, W. H. Rev. Sci. Instrum. 1981, 52, 33 e Newby, J. J.; Serafin, M. M.; Peebles, R. A.; Peebles, S. A. Phys. Chem. Chem. Phys. 2005, 7, 487 4

CH 2 ClF 1 11 ← /2 ← 7/2 S/N ≈ 2800 CH 2 ClF···HCCH 3 03 ← /2 ←7/2 S/N ≈ 250 CH 2 35 ClF···HCCH CH 2 37 ClF···HCCH CH 2 ClF···HCCH Spectrum 5

CH 2 ClF· · ·HCCH Constants Ab initio Chlorine in CH 2 35 ClF··· H 12 C 12 CH CH 2 37 ClF··· H 12 C 12 CH CH 2 35 ClF··· H 13 C 13 CH CH 2 37 ClF··· H 13 C 13 CH A / MHz (14) (12) (21) (24) B / MHz (10) (15) (11) (11) C / MHz (7) (10) (7) (8) χ aa / MHz (5)22.270(7)28.362(8)22.096(8) χ bb / MHz–60.13–65.618(13)–51.496(22)–65.474(21)–51.337(20) χ cc / MHz (8)29.226(14)37.112(13)29.240(12) χ ab / MHz– – – – NaNa – Δν rms / kHz b – P cc / uÅ (4)1.7478(15)1.7461(5)1.7426(5) a number of fitted transitions b Δν rms =√(∑(ν obs -ν calc ) 2 /N) c Blanco, S.; Lesarri. A.; López, J. C.; Alonso, J. L.; Guarnieri, A. J. Mol. Spec. 1995, 174, 397 P cc (CH 2 ClF) = (1) uÅ 2 c 6

CH 2 ClF···HCCH Structure Inertial Fit “Best” a Ab initio Chlorine in R |||…C / Å 3.605(4)3.476 θ C–|||…C / ° 73.9(9)73.6 θ |||…C–Cl / ° 91.87(27)94.3 R Cl…H / Å 3.207(22)3.138 R |||…H / Å 3.236(6)3.101 θ C–H…||| / ° 101.0(1)101.2 θ C–H…Cl / ° 109.0(1.0) (22) Å R H…p = 3.236(6) Å q C-H…p = 101.0(1)° 91.87(27)° 73.9(9)° 3.605(4) Å 109.0(10)° 85.2(22)° Cl F a average of the structures produced by fitting (I a, I b, I c ), (I a, I b ), (I a, I c ), and (I b, I c ) in STRFITQ b Δν rms =√(∑(ν obs -ν calc ) 2 /N) 7

CH 2 F 2 ···HCCH Predictions A /MHz11211 B /MHz1703 C /MHz1493 E ZPE /cm -1 0 A /MHz8121 B /MHz2067 C /MHz1838 E ZPE /cm A /MHz10588 B /MHz1498 C /MHz1323 E ZPE /cm  MP2/ G(2d,2p) level 8 1 imaginary frequency

CH 2 F 2 ···HCCH Spectrum Measurement CP-FTMW at Eastern Illinois University 1.5% CH 2 F 2 / 1.5% HCCH in 5 bar He/Ne, 1.6 atm backing pressure 480 MHz Chirp, 1000 averages GHz Balle-Flygare FTMW Spectrometer at Eastern Illinois University a a Obenchain, D.A.; Elliott, A.A.; Steber, A.L.; Peebles, R.A.; Peebles, S.A. Wurrey, C.J.; Guirgis, G.A. J. Mol. Spec. 2010, 261,

CH 2 F 2 ···HCCH Spectrum CH 2 F 2 ···HCCH CH 2 F 2 ···H 2 O a (CH 2 F 2 ) 3 b (CH 2 F 2 ) 2 c a Caminati,W.; Melendra, S; Rossi, I.; Favero, P. G. J. Am. Chem. Soc. 1999, 121, b Blanco, S.; Melandri, S.; Ottaviani, P. Caminati, W. J. Am. Chem. Soc. 2007, 129 (9), 2700 c Blanco, S.; López, J. C.; Lesarri, A.; Alonso, J. L. J. Mol. Struct. 2002, 612, avg scan 1.5% CH 2 F 2 1.5% HCCH in 5 bar He/Ne

 From the original 1000 average scan  Only a-types were visible in the original scan  Potential b-type transitions were found in a 2000 average scan with a smaller chirp ( MHz) 13 CH 2 F 2 ···HCCH Isotopologue 12 CH 2 F 2 ···H 12 C 12 CH CH 2 F 2 ···H 12 C 12 CH

CH 2 F 2 ···HCCH Constants Parameter Ab initio MP2/ G(2d,2p) CH 2 F 2 ···HCCH 13 CH 2 F 2 ···HCCHCH 2 F 2 ···H 13 C 13 CH A /MHz (18) (24) (20) B /MHz (5) (8) (5) C /MHz (5) (8) (5) Δν rms /kHz a NbNb P aa /uÅ (14) (25) (16) P bb /uÅ (14) (25) (16) P cc /uÅ (14) (25)1.6724(16) P cc (CH 2 F 2 ) = (1) uÅ 2 c a Δν rms =√(∑(ν obs -ν calc ) 2 /N) b number of fitted transitions c Hirota, E.; Tanaka, T.; Sakakibara, A.; Ohashi, Y.; Morino, Y. J. Mol. Spec. 1970, 34,

CH 2 F 2 ···HCCH Stark Effects Transition10 5 x (Δν/E 2 ) obs.10 5 x (Δν/E 2 ) calc ←1 01 |M|= ←1 01 |M|= ←2 02 |M|= ←2 02 |M|= ←2 02 |M|= ←0 00 |M|= ←2 12 |M|= This StudyAb initio μ a /D1.511(3)1.68 μ b /D1.2246(19)1.29 μ total /D (26)2.12 c a b 13 μ total (CH 2 F 2 ) = 1.97(2) D a a Lide, D. R. Jr. J. Am. Chem. Soc. 1952, 74 (14) 3548

Inertial Fit “Best” a Ab initio Structure R |||···C /Å 3.625(9)3.51 θ C-|||···C /° 70.2(28)66.5 θ |||···C-F /° 80.0(8)83.7 R F···H /Å2.84(6)2.68 R H···||| /Å3.363(14)3.22 R cm /Å4.033(1)3.937 θ C-H···||| /°94.9(3)96.2 θ C-H···F /°105(3)111 θ C-F···H /°104.5(13)99.7 CH 2 F 2 ···HCCH Structure 3.625(9) Å R H···||| = 3.363(14) Å θ C-H…||| = 94.9(3)° 70.2(28)° 80.0(8)° 104.5(13)° 105(3)° 2.84(6) Å a /Åb /Å Substitution (11) (2) Inertial fit (I a, I c ) Ab initio structure a average of the structures produced by fitting (I a, I b, I c ), (I a, I b ), (I a, I c ), and (I b,I c ) in STRFITQ 14

HCCH complex k s /N m -1 E b / kJ mol -1 CH 2 F (3)3.88(6) CH 2 ClF3.46(2)4.75(4) CHClF 2 a 3.7(5) [3.7(5)] b 4.9(5) [5.0(5)] b CHBrF 2 c 1.82(1)2.46(3) Force Constants and Binding Energies 15 a Elmuti, L. F.; Peebles, R. A.; Peebles, S. A.; Steber, A. L.; Neill, J. L.; Pate, B. H. Phys. Chem. Chem. Phys DOI /c1cp20684b b Strucure refit using a refined CHClF 2 monomer structure. Vincent, M. A.; Hillier, I. H. Phys. Chem. Chem. Phys. 2011, 13, 4388 c Obenchain D. A.; Bills, B. J.; Christenholz, C. L.; Peebles, R. A.; Peebles, S. A.; Neill, J. L.; Pate, B. H. Manuscript in preparation

C-H···π Interactions CH 2 F 2 ···HCCHCH 2 ClF···HCCHCHClF 2 ···HCCH a CHBrF 2 ···HCCH R |||-C /Å3.625(9)3.605(4) 3.710(4) [3.676] 3.683(7) R |||-H /Å3.363(14)3.236(1) 2.730(6) [2.655] 2.670(8) θ |||···C-X /˚80.0(8)91.87(27) 88.0(5) [87.7] 91.71(94) R C-C / Å3.468(37)3.487(10) 3.563(16) [3.500] 3.540(14) 16 a Strucure refit using a refined CHClF 2 monomer structure. Vincent, M. A.; Hillier, I. H. Phys. Chem. Chem. Phys. 2011, 13, 4388

 Distributed Multipole Analysis Up to quadrupole terms considered  GDMA 2.2 Anthony Stone a  MIN16 Buckingham-Fowler model b,c PROSPE website d,e Electrostatic Interactions 17 Lowest Energy Highest Energy Buckingham- Fowler Model Ab initio MP2/ G(2d,2p) a Stone, A. J. J. Chem Theory Comp. 2005, 1, 1128 b Buckingham A. D.; Fowler P. W. J.Chem.Phys. 1983, 79, 6426 c Buckingham A. D.; Fowler P. W. Can.J.Chem. 1985, 63, 2018 d Kisiel Z.; Fowler, P. W.; Legon A.C. J. Chem. Phys. 1990, 93, 3054 e Kisiel Z. MIN16, PROSPE. E ZPE = 0 cm -1 E ZPE = 34 cm -1 E ZPE = 64 cm -1 E ZPE = 165 cm -1 1 imaginary frequency

Electrostatic Interactions Lowest Energy Highest Energy Buckingham- Fowler Model Ab initio MP2/ G(2d,2p) 18 E ZPE = 0 cm -1 E ZPE = 13 cm -1 E ZPE = 26 cm -1 E ZPE = 231 cm -1

Conclusions  Assigned the spectrum of CH 2 ClF···HCCH (4 isotopologues) and CH 2 F 2 ···HCCH (3 isotopologues) Structure fits ○ Similar R C-C distance for analog HCCH complexes Dipole moments of CH 2 F 2 ···HCCH ○ Agree with ab initio to within expected deviation ○ No enhancement of the dipole moment from the measured monomer value Force constants and binding energies ○ Appears that the chlorine containing halomethanes are more strongly bound to acetylene than the other halomethanes studied thus far 19

Conclusions  Intermolecular Interactions Electrostatic model can be used to predict possible asymmetric structures ○ Preference of the lowest energy structure cannot be determined by only an electrostatic model ○ Orient a  Additional studies are still needed to reliably determine the types of intermolecular interactions that are influencing the structures of these complexes 20 a Stone, A. J.; Dullweber, A.; Engkvist, O.; Fraschini, E.; Hodges, M. P.; Meredith, A. W.; Nutt, D. R.; Popelier, P. L. A.; Wales, D. J. 2002, ‘Orient: a program for studying interactions between molecules, version 4.5,’ University of Cambridge, Enquiries to A. J. Stone,

Current Projects 21  CH 2 ClF Vinyl Fluoride CH 2 =CH 2 CO 2  CH 2 F 2

Support  NSF Research at Undergraduate Institutions CHE  Professor Kuczkowski for the H 13 C 13 CH sample 22

I a, I b, I c a I a, I b a I a, I c a I b, I c a “Best” b Ab initio Structure I R |||…C / Å 3.605(3)3.608(3)3.600(3)3.606(3) 3.605(4)3.476 θ C–|||…C / ° 74.10(5)74.93(5)73.43(5)73.47(5) 73.9(9)73.6 θ |||…C–Cl / ° 91.82(21)91.71(21)92.19(22)91.72(21) 91.87(27)94.3 R Cl…H / Å c 3.210(2)3.232(2)3.198(2)3.190(2) 3.207(22)3.138 R |||…H / Å c 3.237(16)3.240(16)3.229(18)3.238(16) 3.236(6)3.101 θ C–H…||| / ° c 100.9(7) 101.1(7)100.9(7) 101.0(1)101.2 θ C–H…Cl / ° c 108.8(1)107.8(1)109.6(1)109.5(1) 109.0(1.0)110.1 rms / u Å 2 d –– CH 2 ClF···HCCH Structure 23

CH 2 35 ClF–H 12 C 12 CHCH 2 37 ClF–H 12 C 12 CHCH 2 35 ClF–H 13 C 13 CHCH 2 37 ClF–H 13 C 13 CHAb initio Chlorine in A / MHz (14) (12) (21) (24) 5120 B / MHz (10) (15) (11) (11) 1625 C / MHz (7) (10) (7) (8) 1243  J / kHz 3.308(12)3.158(34)3.287(19)3.163(18) –  JK / kHz 14.03(8)14.63(12)11.95(11)12.66(14) –  K / kHz –402(14)–439(46)–598(22)–583(24) –  J / kHz 0.830(15)0.874(25)0.929(15)0.784(17) –  aa / MHz (5)22.270(7)28.362(8)22.096(8)  bb / MHz –65.618(13)–51.496(22)–65.474(21)–51.337(20) –60.13  cc / MHz (8)29.226(14)37.112(13)29.240(12)  ab / MHz – – – – – P cc / u Å (4)1.7478(15)1.7461(5)1.7426(5) N cN c –  rms / kHz – CH 2 ClF···HCCH Constants 24

CH 2 F 2 ···HCCH Structure I a, I b, I c I a, I b I a, I c I b, I c “Best” Ab initio Structure R |||···C /Å 3.625(2)3.625(7)3.617(12)3.631(11)3.625(9)3.51 θ C-|||···C /° 70.5(38)70.5(36)66(6)74(7)70.2(28)66.5 θ |||···C-F /° 79.9(11) 81.3(19)79.1(16)80.0(8)83.7 R F···H /Å 2.84(11)2.84(1)2.75(16)2.92(19)2.84(6)2.68 R H···||| /Å 3.365(4)3.364(15)3.346(19)3.377(18)3.363(14)3.22 R cm /Å 4.033(18)4.033(9)4.033(17)4.033(15)4.033(1)3.937 θ C-H···||| /° 94.9(5) 95.4(8)94.5(7)94.9(3)96.2 θ C-H···F /° 105(5) 110(7)101(7)105(3)111 θ C-F···H /° 104.7(14)104.7(12)102.4(24)106.1(20)104.5(13)99.7 Rms/ uÅ (7) Å R H···||| = 3.63(11) Å θ C-H…||| = 94.9(3)° 70.2(28)° 80.0(8)° 104.5(13)° 105(3)° 2.84(6) Å 25

Instruments  CH 2 ClF···HCCH CP-FTMW at the University of Virginia  CH 2 F 2 ···HCCH CP-FTMW at Eastern Illinois University  Balle-Flygare FTMW at Eastern Illinois University Used to measure transitions of both species Weak components of parent species and isotopologues 26

CH 2 F 2 ···HCCH CH2F2CHF3 CH2ClFCHClF2CHBrF2 Acetylene k s /N m (3)--3.46(2)3.7(5)1.82(1) E b /kJ mol (6)--4.75(4)4.9(5)2.46(3) Carbonyl Sulfide k s /N m (1) 1.2(1) 3.25(7)--- E b /kJ mol (1) 1.6(1) 3.5(1)--- Carbon Dioxide k s /N m (2)---- E b /kJ mol (4)---- Water k s /N m (2)- E b /kJ mol (2)- 27

CH 2 F 2 ···HCCH Constants Parameter ab initio MP2/( G(2d,2p)) CH 2 F 2 ···HCCH 13 CH 2 F 2 ···HCCHCH 2 F 2 ···H 13 C 13 CH A /MHz (18) (24) (20) B /MHz (5) (8) (5) C /MHz (5) (8) (5) Δ J /kHz- 5.22(12) 5.216(26) a 4.819(12) Δ JK /kHz (8) a (8) δ J /kHz (32) a 0.774(3) δ K /kHz- 20.2(23) 20.2 a 2.02(24) Δν rms /kHz N c P aa /uÅ (14) (25) (16) P bb /uÅ (14) (25) (16) P cc /uÅ (14) (25) (16) P cc (CH2F2) = 1.651(1) uÅ 2 28

Electrostatic Interactions Relative energy Dipole- Quadrapole Quadrapole- Quadrapole

Electrostatic Interactions Lowest Energy Highest Energy Buckingham- Fowler Model Ab initio MP2/ G(2d,2p) 30 E ZPE = 0 cm -1 E ZPE = 13 cm -1 E ZPE = 26 cm -1