1 Blooming Trees for Minimal Perfect Hashing Author: Gianni Antichi, Domenico Ficara, Stefano Giordano, Gregorio Procissi, Fabio Vitucci Publisher: GLOBECOM.

Slides:



Advertisements
Similar presentations
A Memory-optimized Bloom Filter using An Additional Hashing Function Author: Mahmood Ahmadi, Stephan Wong Publisher: IEEE GLOBECOM 2008 Presenter: Yu-Ping.
Advertisements

An On-Chip IP Address Lookup Algorithm Author: Xuehong Sun and Yiqiang Q. Zhao Publisher: IEEE TRANSACTIONS ON COMPUTERS, 2005 Presenter: Yu Hao, Tseng.
1 Blooming Trees: Space-Efficient Structures for Data Representation Author: Domenico Ficara, Stefano Giordano, Gregorio Procissi, Fabio Vitucci Publisher:
1 Fast Routing Table Lookup Based on Deterministic Multi- hashing Zhuo Huang, David Lin, Jih-Kwon Peir, Shigang Chen, S. M. Iftekharul Alam Department.
Improving Database Performance on Simultaneous Multithreading Processors Jingren Zhou Microsoft Research John Cieslewicz Columbia.
An Optimal Algorithm of Adjustable Delay Buffer Insertion for Solving Clock Skew Variation Problem Juyeon Kim, Deokjin Joo, Taehan Kim DAC’13.
An Improved Construction for Counting Bloom Filters Flavio Bonomi Michael Mitzenmacher Rina Panigrahy Sushil Singh George Varghese Presented by: Sailesh.
A Dynamic Binary Hash Scheme for IPv6 Lookup Q. Sun 1, X. Huang 1, X. Zhou 1, and Y. Ma 1,2 1. School of Computer Science and Technology 2. Beijing Key.
Recursively Partitioned Static IP Router Tables Author: Wencheng Lu,Sartaj Sahni Publisher: IEEE TC,2010 Presenter: Jia-Wei Yo Date: 2011/09/14 1.
1 A Heuristic and Hybrid Hash- based Approach to Fast Lookup Author: Gianni Antichi, Andrea Di Pietro, Domenico Ficara, Stefano Giordano, Gregorio Procissi,
1 Compressing Two-Dimensional Routing Tables Author: Subhash Suri, Tuomas Sandholm, Priyank Warkhede. Publisher: ALGO'03 Presenter: Yu-Ping Chiang Date:
Look-up problem IP address did we see the IP address before?
Fast Packet Classification Using Bloom filters Author: Sarang Dharmapurikar, Haoyu Song, Jonathan Turner, John Lockwood Publisher: Architecture for networking.
A Multi Gigabit FPGA-based 5-tuple classification system Author: Antonis Nikitakis, Ioannis Papaefstathiou; Publisher: Communications, ICC '08. IEEE.
1 HEXA: Compact Data Structures or Faster Packet Processing Author: Sailesh Kumar, Jonathan Turner, Patrick Crowley, Michael Mitzenmacher. Publisher: ICNP.
Fast and Scalable Packet Classification Using Perfect Hash functions Author: Viktor Puš, Jan Korenek Publisher: FPGA’09 Presenter: Yu-Ping Chiang Date:
CS2422 Assembly Language & System Programming September 22, 2005.
Properties Change theme Properties Change theme Windows (standard) Windows start.
COMPARISONS 64-bit Intel Xeon X Ghz processors –12 processors sharing 48 GB RAM –Each BARON run restricted to single processor All experiments.
COMPARISONS 64-bit Intel Xeon X Ghz processors –12 processors sharing 48 GB RAM –Each BARON run restricted to single processor All experiments.
Efficient Parallel Set-Similarity Joins Using Hadoop Chen Li Joint work with Michael Carey and Rares Vernica.
Technology Expectations in an Aeros Environment October 15, 2014.
Task Scheduling for Highly Concurrent Analytical and Transactional Main-Memory Workloads Iraklis Psaroudakis (EPFL), Tobias Scheuer (SAP AG), Norman May.
Sampling Techniques to Accelerate Pattern Matching in Network Intrusion Detection Systems Author: Domenico Ficara, Gianni Antichi, Andrea Di Pietro, Stefano.
Authors: Yi Wang, Tian Pan, Zhian Mi, Huichen Dai, Xiaoyu Guo, Ting Zhang, Bin Liu, and Qunfeng Dong Publisher: INFOCOM 2013 mini Presenter: Chai-Yi Chu.
MIDeA :A Multi-Parallel Instrusion Detection Architecture Author: Giorgos Vasiliadis, Michalis Polychronakis,Sotiris Ioannidis Publisher: CCS’11, October.
Author: Haoyu Song, Fang Hao, Murali Kodialam, T.V. Lakshman Publisher: IEEE INFOCOM 2009 Presenter: Chin-Chung Pan Date: 2009/12/09.
Processor Development The following slides track three developments in microprocessors since Clock Speed – the speed at which the processor can carry.
1 ( قالوا سبحانك لا علم لنا الإ ما علمتنا إنك أنت العليم الحكيم ) صدق الله العظيم سورة البقرة آيه 32.
Fast Packet Classification Using Bloom filters Authors: Sarang Dharmapurikar, Haoyu Song, Jonathan Turner, and John Lockwood Publisher: ANCS 2006 Present:
Towards a Billion Routing Lookups per Second in Software  Author: Marko Zec, Luigi, Rizzo Miljenko Mikuc  Publisher: SIGCOMM Computer Communication Review,
Author : Ramakrishnan Kandhan, Nikhil Teletia & Jignesh M. Patel Publisher : International Conference on Very Large Data Bases 2010 Presenter : Zong-Lin.
On Performance of Delegation in Java. Department of Computer Science, Software Technology Group HotSWUp 2009, Orlando, USA, Sebastian Götz (TU.
EQC16: An Optimized Packet Classification Algorithm For Large Rule-Sets Author: Uday Trivedi, Mohan Lal Jangir Publisher: 2014 International Conference.
Hyper Threading Technology. Introduction Hyper-threading is a technology developed by Intel Corporation for it’s Xeon processors with a 533 MHz system.
Sampling Techniques to Accelerate Pattern Matching in Network Intrusion Detection Systems Author : Domenico Ficara, Gianni Antichi, Andrea Di Pietro, Stefano.
Szymon Grabowski, Marcin Raniszewski Institute of Applied Computer Science, Lodz University of Technology, Poland The Prague Stringology Conference, 1-3.
 Author: Domenico Ficara, Stefano Giordano, Gregorio Procissi, Fabio Vitucci, Gianni Antichi, Andrea Di Pietro  Publisher: 2008 ACM SIGCOMM  Presenter:
PC hardware and x86 programming Lec 2 Jinyang Li.
Author: Heeyeol Yu and Rabi Mahapatra
A Pattern-Matching Scheme With High Throughput Performance and Low Memory Requirement Author: Tsern-Huei Lee, Nai-Lun Huang Publisher: TRANSACTIONS ON.
Today’s Computers By Sharif Safdary. The right computer for you. Advantages to Laptops Advantages to Laptops Size Size Weight Weight Portability Portability.
Introducing the NEW Apple iBook Laptop Computer Anthony Shaffo NEW.
1 Lecture 21: Hash Tables Wednesday, November 17, 2004.
A presentation by Lewis Betterton.  What is an Operating System? Boot process Drivers Hardware and resource control Manages programs.
Author : Yang Xu, Lei Ma, Zhaobo Liu, H. Jonathan Chao Publisher : ANCS 2011 Presenter : Jo-Ning Yu Date : 2011/12/28.
Low Power Huffman Coding for High Performance Data Transmission Chiu-Yi Chen,Yu-Ting Pai, Shanq-Jang Ruan, International Conference on, ICHIT '06,
Parts of a Book. Title Page Identifies bibliographical information concerning the book, to include: name of author(s), title of book, number of edition,
Cuckoo Filter: Practically Better Than Bloom Author: Bin Fan, David G. Andersen, Michael Kaminsky, Michael D. Mitzenmacher Publisher: ACM CoNEXT 2014 Presenter:
An Improved DFA for Fast Regular Expression Matching Author : Domenico Ficara 、 Stefano Giordano 、 Gregorio Procissi Fabio Vitucci 、 Gianni Antichi 、 Andrea.
Lab Activities 1, 2. Some of the Lab Server Specifications CPU: 2 Quad(4) Core Intel Xeon 5400 processors CPU Speed: 2.5 GHz Cache : Each 2 cores share.
MERmaid: Distributed de novo Assembler Richard Xia, Albert Kim, Jarrod Chapman, Dan Rokhsar.
POLITECNICO DI MILANO A SystemC-based methodology for the simulation of dynamically reconfigurable embedded systems Dynamic Reconfigurability in Embedded.
Brief introduction about “Grid at LNS”
Counting bloom filters for pattern matching and anti-evasion at the wire speed Author: Gianni Antichi, Domenico Ficara, Stefano Giordano, Gregorio Procissi,
Author: Heeyeol Yu; Mahapatra, R.; Publisher: IEEE INFOCOM 2008
Chang Hyun Park, Taekyung Heo, and Jaehyuk Huh
Challenging Cloning Related Problems with GPU-Based Algorithms
Introduction to Intel IA-32 and IA-64 Instruction Set Architectures
SigMatch Fast and Scalable Multi-Pattern Matching
SAP HANA Cost-optimized Hardware for Non-Production
GRAPHIC ALARM MANAGEMENT SYSTEM
SAP HANA Cost-optimized Hardware for Non-Production
Big Data Analytics: Exploring Graphs with Optimized SQL Queries
Publisher : TRANSACTIONS ON NETWORKING Author : Haoyu Song, Jonathan S
Author: Domenico Ficara ,Gianni Antichi ,Nicola Bonelli ,
Bloom filters From Probability and Computing
Hash Functions for Network Applications (II)
Assembly Language for Intel-Based Computers, 5th Edition
An index-split Bloom filter for deep packet inspection
Presentation transcript:

1 Blooming Trees for Minimal Perfect Hashing Author: Gianni Antichi, Domenico Ficara, Stefano Giordano, Gregorio Procissi, Fabio Vitucci Publisher: GLOBECOM 2008 Presenter: Yu-Ping Chiang Date: 2009/07/21

2 Outline Related work  Huffman spectral bloom filter  Blooming tree Minimal Perfect Hash Function  Using naïve blooming tree  Using optimized blooming tree and HSBF Experimental result

3 Related work – Huffman Spectral Bloom Filter Using Huffman code encode Counting Bloom Filter (CBF)  Encode value δ with (δ+1) bits CBF HSBF δ”1s”, and a trailing 0

4 B0 B1 B2 B items 2 items 1 item item Bit string HASH FUNCTION 3 bits 1 bit index Related work – blooming tree

5 Outline Related work  Huffman spectral bloom filter  Blooming tree Minimal Perfect Hash Function  Using naïve blooming tree  Using optimized blooming tree and HSBF Experimental result

6 MPHF – using NBT B0 B1 B2 B item 2 items 1 item item Bit string HASH FUNCTION 3 bits 1 bit index Popcount is final hash number

7 MPHF – using NBT B0 B1 B item 2 items 1 item Step1: Step2: final hash number = popcount item1 item2 item4 item3 hash item1 item2 item4 item3 popcount item1item2item3item4 B31111

8 MPHF – using OBT and HSBT item 2 items 1 item 0000 B0 B1 B item 2 items 1 item NBTOBT

9 MPHF – using OBT and HSBT item 2 items 1 item items 1 item OBTOBT with HSBF

10 MPHF – using OBT and HSBT Step1: Step2: final hash number = zero blocks item1 item2 item4 item3 Zero blocks item1 item2 item4 item3 hash … … item 2 items 1 item

11 MPHF – using OBT and HSBT Step1: Step2: final hash number = zero blocks item1 item2 item4 item3 Zero blocks item1 item2 item4 item3 hash … … item 2 items 1 item Start addr.Prev. elementsPrev. “10”s Y100 Y222 Lookup table : Y1 Y2

12 MPHF – using OBT and HSBT Step1: Step2: final hash number = zero blocks item1 item2 item4 item3 Zero blocks item1 item2 item4 item3 hash … … item 2 items 1 item Start addr.Prev. elementsPrev. “10”s Y100 Y222 Lookup table : Y1 Y2 0

13 Outline Related work  Huffman spectral bloom filter  Blooming tree Minimal Perfect Hash Function  Using naïve blooming tree  Using optimized blooming tree and HSBF Experimental result

14 Experimental result Our  Intel 2.4Ghz Pentium 4 Core 2 Duo processor, 4GB RAM, Linux OS 2.6

15 Experimental result BPZ  3.2 Ghz XEON, 1G RAM, Linux 2.6 BL  Pentium 4

16

U U Bloom Filter 17 U U ite m1 ite m2 ite m 3 If present item in U as xxx Item1 can be 001 Item2 can be 010 Item3 can be 110 S S ite m1 ite m 3 There can be at most three items each present with three bits in set S. S can be present as

Bloom Filter 18 U U ite m 1 ite m 2 ite m 3 Assume hash function H(x) : H(item 1 ) = 0 H(item 2 ) = 1 H(item 3 ) = 2 U can be present in three bits, No.H(item i ) bit present i S can be present as 101 U U S S ite m1 ite m 3