Rare ISotope INvestigation at GSI experimental set-up sub-shell closure (N=32 gap) for Cr nuclei pairing interaction in semi-magic Sn nuclei shapes and.

Slides:



Advertisements
Similar presentations
N. Pietralla and K. Sonnabend for the SFB 634
Advertisements

LoI Relativistic Coulomb M1 excitation of neutron-rich 85 Br N. Pietralla G. Rainovski J. Gerl D. Jenkins.
HIGS2 Workshop June 3-4, 2013 Nuclear Structure Studies at HI  S Henry R. Weller The HI  S Nuclear Physics Program.
MINIBALL g-ray Spectroscopy far from Stability
Coulomb excitation of the band-terminating 12 + yrast trap in 52 Fe IFIC, CSIC – University of Valencia, Spain University and INFN-Sezione di Padova, Italy.
Study of single particle properties of neutron-rich Na istopes on the „shore of the island of inversion“ by means of neutron-transfer reactions Thorsten.
4/29/20151Cosenors - BentleyOverview Physics of Proton-rich Nuclei in the UK Mike Bentley (Univ. of York, UK) Physics of Proton-rich Nuclei in the UK Mike.
1. Isospin Symmetry and Coulomb Effects Towards the Proton Drip-Line RISING Experiment performed October 2003 Keele, GSI, Brighton, Lund, Daresbury, Surrey,
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
Proton Inelastic Scattering on Island-of-Inversion Nuclei Shin’ichiro Michimasa (CNS, Univ. of Tokyo) Phy. Rev. C 89, (2014)
First spectroscopy of 64 Cr and the collectivity of neutron-rich nuclei at N~40 CEA Saclay: A. Obertelli, F. Flavigny, A. Gillibert, A. Goergen, W. Korten,
Congresso del Dipartimento di Fisica Highlights in Physics –14 October 2005, Dipartimento di Fisica, Università di Milano Study of exotic nuclei.
Relativistic Coulomb excitation of nuclei near 100 Sn C.Fahlander, J. Eckman, M. Mineva, D. Rudolph, Dept. Phys., Lund University, Sweden M.G., A.Banu,
Rare ISotope INvestigation at GSI Status of the relativistic beam campaign Introduction Fast beam physics program Experimental methods Status and perspectives.
1107 Series of related experiments; first for transfer with TIGRESS Nuclear structure motivation for 25,27 Na beams Nuclear astrophysics motivation for.
RISING Project Adam Maj Adam Maj (IFJ PAN Kraków) NEEN meeting in Krakow September 14/ Rare Isotopes Investigation at GSI.
Workshop on Physics on Nuclei at Extremes, Tokyo Institute of Technology, Institute for Nuclear Research and Nuclear Energy Bulgarian Academy.
Xy position from LYCCA Slowed down beams - new perspective for GOSIA scattering experiments at relativistic energies.
N. Saito The RISING stopped beam physics meeting Technical status of RISING at GSI N. Saito - GSI for the RISING collaboration Introduction Detector performance.
John Simpson Nuclear Physics Group Daresbury Laboratory The AGATA project NUSTAR ’05 University of Surrey January 2005.
Stephane Grévy : October 8, 2012 Unveiling the intruder deformed state in 34 Si 20 and few words about N=28 IFIN - Bucharest F. Rotaru.
Primary beam production target ESR The GSI Radioactive Beam Facilities RISING high-resolution Ge  -spectrometer.
Soft collective excitations in weakly bound nuclei studied with ELI-NP A.Krasznahorkay Inst. of Nuclear Research of the Hung. Acad. of Sci. (ATOMKI)
From CATE to LYCCA Mike Taylor Particle Identification After the Secondary Target.
Proposal: Beta-delayed neutron spectroscopy of Ca.
Nuclear Structure studies using fast radioactive beams J. Gerl SNP2008 July Ohio University, Athens Ohio USA –The RISING experiment –Relativistic.
abrasion ablation  σ f [cm 2 ] for projectile fragmentation + fission  luminosity [atoms cm -2 s -1 ]  70% transmission SIS – FRS  ε trans transmission.
Pygmy Dipole Resonance in 64Fe
Proton emission from deformed rare earth nuclei: A possible AIDA physics campaign Paul Sapple PRESPEC Decay Physics Workshop Brighton 12 January 2011.
Relativistic Coulomb Excitation of Neutron-Rich 54,56,58 Cr Herbert Hübel Helmholtz-Institut für Strahlen- und Kernphysik Universität Bonn Germany.
AGATA and the Physics Programme Dino Bazzacco INFN Padova on behalf of the AGATA collaboration NuPECC Meeting with Funding Agencies November 29, 2004,
35 Ca decay beta-delayed 1- and 2-proton spokespersons: J. Giovinazzo (CENBG), O. Tengblab (CSIC) institutions: Centre d’Etudes Nucléaires (Bordeaux) –
AGATA AGATA Advanced Gamma-Ray Tracking Array Next-generation spectrometer based on  -ray tracking Radioactive and stable beams, high recoil velocities.
RISING: Rare Isotope Spectroscopic INvestigation at GSI CEA Saclay CSNSM Orsay GANIL Caen IPN Orsay CLRC Daresbury Univ. Keele Univ. Liverpool Univ. Manchester.
RNB Cortina d’Ampezzo, July 3th – 7th 2006 Elisa Rapisarda Università degli studi di Catania E.Rapisarda for the Diproton collaboration 18 *
Coulomb excitation of neutron-rich 32,33 Mg nuclei with MINIBALL at HIE-ISOLDE P. Reiter 1, B. Siebeck 1, M. Seidlitz 1, A. Blazhev 1, K. Geibel 1, N.
 2-proton emission  experimental set-up  decay results  2p emission from 45 Fe  perspectives Jérôme Giovinazzo – CEN Bordeaux-Gradignan – France PROCON’03.
H.Sakurai Univ. of Tokyo Spectroscopy on light exotic nuclei.
Rare Isotope Spectroscopic INvestigation at GSI. abrasion ablation  σ f [cm 2 ] for projectile fragmentation + fission  luminosity [atoms cm -2 s -1.
NS08 MSU, June 3rd – 6th 2008 Elisa Rapisarda Università degli studi di Catania E.Rapisarda 18 2.
Prof. Paddy Regan Department of Physics
FAIR (Facility for Antiproton and Ion Research) (Darmstadt, Germany) low-energy cave MeV/u fragmentation/fission ~1GeV/u fragment separator 350m.
Beta decay around 64 Cr GANIL, March 25 th V 63 V 64 V 60 V 61 V 63 Cr 64 Cr 65 Cr 61 Cr 62 Cr 60 Cr 64 Mn 65 Mn 66 Mn 65 Fe 67 Fe 1) 2 + in 64.
Trends in Heavy Ion Physics Research, Dubna, May Present and future physics possibilities at ISOLDE Karsten Riisager PH Department, CERN
Data Analysis Working Group AGATA Tasks of the WG Schedule Johan Nyberg, ADAWG meeting, June 12-13, 2003, NBI.
Adam Maj IFJ PAN Krakow Search for Pigmy Dipole Resonance in 68 Ni RISING experiment in GSI EWON Meeting Prague, May, 2007.
Bentley et al - Istanbul May 7th Letter of Intent: Letter of Intent: Isospin Symmetry and Transition Rates in Isobaric Multiplets M.A.Bentley,
Reinhard Kulessa1 Polish-German Meeting on the New International Accelerator Facility at Darmstadt Present Polish-German Collaborations at GSI.
KS group meeting April 2007Transfer reactions at REX-ISOLDE: Status and a physical case to be studied K. U. Leuven One Nucleon Transfer Reactions Around.
Daniel Bloor & The AGATA Collaboration IoP NPPD Conference, University of Glasgow, 05/04/11. Development of a simulation package for fragmentation reactions.
Coulomb excitation of the two proton-hole nucleus 206 Hg CERN-ISOLDE, Geneva, Switzerland (M. Kowalska, E. Rapisarda, T. Stora, F.J.C. Wenander) GSI, Darmstadt,
Advances in Radioactive Isotope Science (ARIS2014)
Proton emission from deformed rare earth nuclei: A possible AIDA physics campaign Paul Sapple PRESPEC Decay Physics Workshop Brighton 12 January 2011.
Efficiency versus energy resolution
for the LNL-Ganil collaboration
Decay spectroscopy with LaBr3(Ce) detectors at RIKEN and GSI
Search for unbound excited states of proton rich nuclei
Maria Kmiecik, Giovanna Benzoni, Daisuke Suzuki
Isospin Symmetry test on the semimagic 44Cr
Perspectives for Nuclear Spectroscopy at the UNILAC
H.J. Wollersheim, P. Doornenbal, J. Gerl
Rare Isotope Spectroscopic INvestigation at GSI
Recent Highlights and Future Plans at VAMOS
Simulations of the AGATA Response to Relativistic Heavy Ions Beams
Efficiency versus energy resolution
Rare Isotope Spectroscopic INvestigation at GSI
108Sn studied with intermediate-energy Coulomb excitation
Implantation detector as active stopper Rakesh Kumar, P. Doornenbal, I
Rare Isotope Spectroscopic INvestigation at GSI
Presentation transcript:

Rare ISotope INvestigation at GSI experimental set-up sub-shell closure (N=32 gap) for Cr nuclei pairing interaction in semi-magic Sn nuclei shapes and shape coexistence: 136 Nd, 134 Ce Pygmy dipole resonance in 68 Ni T=2 mirrors 36 Ca and 36 S future: PreSPEC

Univ. Santiago de Compostela Univ. Madrid Univ. Valencia CEA Saclay CSNSM Orsay GANIL Caen IPN Orsay ILL Grenoble NBI Copenhagen FZ Juelich FZ Rossendorf GSI Darmstadt HMI Berlin LMU Muenchen MPI Heidelberg TU Darmstadt Univ. Bonn Univ. Koeln Univ. Leuven IFIN, Bucharest CLRC Daresbury Univ. Keele Univ. Liverpool Univ. Manchester Univ. Paisley Univ. Surrey Univ. York IFJ Krakow IPJ Swierk Univ. Krakow Univ. Warszawa Univ. Milano INFN Genova INFN Legnaro INFN/Univ. Napoli INFN/Univ. Padova Univ. Camerino Univ. Firenze KTH Stockholm Univ. Lund Univ. Uppsala 350 collaborators43 groups16 countries Rare ISotope INvestigation at GSI

 Nuclear structure of exotic nuclei studied by secondary fragmentation and relativistic Coulomb excitation  g-factor measurements  Isomeric γ- and β-decay studies FRS → secondary radioactive ion beams: Fragmentation or fission of primary beams High secondary beam energies ( AMeV) Fully stripped ions Reactions on a secondary target Implantation inside a stopper The Accelerators: UNILAC (injector) - E<15 AMeV SIS 18Tm 238 U 1 AGeV Beam currents: 238 U 10 9 pps medium mass nuclei pps

The Accelerators: UNILAC (injector) - E<15 AMeV SIS 18Tm 238 U 1 AGeV Beam currents: 238 U 10 9 pps medium mass nuclei pps Fast beam campaign ( ) g-factor campaign (2005) Stopped beam campaign ( ) Rare ISotope INvestigation at GSI FRS: excellent in-flight A and Z selection energy resolution: ~ 1 GeV EUROBALL: excellent γ-ray spectrometer intrinsic energy resolution: ~ 2 keV 131 Sn 132 Sn

Fast beam campaign ( ) g-factor campaign (2005) Stopped beam campaign ( ) EUROBALL Cluster Detectors beam tracking system + Miniball – Hector FRS: excellent in-flight A and Z selection energy resolution: ~ 1 GeV EUROBALL: excellent γ-ray spectrometer intrinsic energy resolution: ~ 2 keV 131 Sn 132 Sn beam Rare ISotope INvestigation at GSI

Time table... RISING Fast beam campaign RISING Stopped beam campaign g-RISING

FRagment Separator 86 Kr, 480 MeV/u CATE MWPC 15 EUROBALL Clusters (105 Ge crystals) ΔE γ =1.6% (1.3 MeV, d = 70 cm) ε γ = 2.8% Ringangular range Experimental set-up 56 Cr

70cm 20cm beam target γ -ray set-up with higher efficiency

Atomic Background Radiation Bremsstrahlung Bremsstrahlung: slowing down of a moving point-charge  Radiative electron capture (REC) capture of target electrons into bound states of the projectile:  Primary Bremsstrahlung (PB) capture of target electrons into continuum states of the projectile:  Secondary Bremsstrahlung (SB) Stopping of high energy electrons in the target:

Ge Cluster detectors BaF 2 HECTOR detectors beam Target chamber CATE Ge Miniball detectors Spectroscopy at relativistic energies

EUROBALL Cluster Detectors Miniball: HPGe segmented detectors HECTOR Large 14.5 x 17 cm BaF 2 Detectors CATE : ΔE-E telescope event by event beam identification Coulomb Excitation at Relativistic Energy New Shell structure at N>>Z Relativistic Coulomb excitation of nuclei near 100 Sn Triaxiality in even-even core nuclei of N=75 isotones E1 Collectivity in neutron rich nuclei 68 Ni nucleusσ (mb) 56 Cr Sn Nd338 / 2180 beam Rare ISotope INvestigation at GSI H.J. Wollersheim NIM A537, 637(2005)

Relativistic Coulomb Excitation of 54,56,58 Cr → 197 Au Identification before the secondary target after secondary target γ-efficiency = 2.8%, ΔE γ = 1.6% (1.3 MeV, d=70 cm)

Relativistic Coulomb Excitation of 54,56,58 Cr → 197 Au A. Bürger et al., Phys. Lett B622, 29 (2005) E  [keV] B(E2) [Wu] 54 Cr (6) 56 Cr (3.0) 58 Cr (4.2) Indication for N=32 sub-shell closure

The 100 Sn / 132 Sn region d 5/2 g 7/2 Naïve single particle filling s 1/2 d 3/2 h 11/2 Z = 50 N=50 g 7/2 s 1/2 d 3/2 h 11/ MeV d 5/2 Single particle energies N=82 Pairing interaction: Large spin-orbit splitting implies a jj-coupling scheme mid shell

Relativistic Coulomb Excitation of 108 Sn → 197 Au Seniority: a broken-pair model  Constant 2 + energy  Simple B(E2) trend as function of shell filling    min energy axis j j j j j j j j J J J =0 =2 Seniority scheme: Emerging discrepancy: Do we need to open the proton space near 100 Sn or do we need to improve the effective interaction? A. Banu, Phys Rev C72, (2005) B(E2) ~ N particles * N holes mid shell

Relativistic Coulomb Excitation of 136 Nd → 197 Au Nd energy [keV] counts First observation of a second excited 2 + state populated in a Coulomb experiment at 100 AMeV using EUROBALL and MINIBALL Ge detectors.  collective strength  shape symmetry  triaxiality (in N=76) in even-even core nuclei of the odd-odd chiral isotones T.R. Saito, Phys.Lett B669, 19 (2008)

Nd energy [keV] counts Triaxiality in even-even nuclei (N=76)

Pygmy Dipole Resonance Collective oscillation of neutron skin against the core Excess Yield Statistical model (Cascade) calculation of  -rays following statistical equilibration of excited target nuclei ( 197 Au) and of the excited beam nuclei ( 68 Ni) folded with RF and in the CM system NP-Core N-Skin O.Wieland et al. PRL 102, (2009)

GDR PDR 5% +/-1 GDR Folded with the detector response function O.Wieland et al. PRL 102, (2009) without pygmy virtual photons  branching Photonuclear cross section Pygmy Dipole Resonance

Mirror symmetry at the proton drip-line: 36 Ca – 36 S Deviations from the classical shell model 34 Si 32 Mg 36 S 40 Ca 36 Ca Z N d 5/2 s 1/2 d 3/2 d 5/2 s 1/2 d 3/2 34 Ca 32 Ca 20 CLUSTER MINIBALL HECTOR Double fragmentation reaction: Primary: 40 Ca, 420 A·MeV, 3·10 8 ions/s, 4 mg/cm 2 9 Be Secondary: 37 Ca, 196·A MeV, 2·10 3 ions/s, 0.7 mg/cm 2 9 Be E 2+ ( 36 Ca) - E 2+ ( 36 S) = -276(16) keV too large to result from Coulomb corrections P. Doornenbal et al., Phys. Lett. B647, 237 (2007)

Deviations from classical shell model

Shell model calculations for 36 Ca – 36 S * B.A. Brown, B.H. Wildenthal: Ann. Rev. of Nucl. Part. Sci. 38 (1988) 29  MED = -257 keV 17 F 17 O 5/2 + 1/ SpSp 600 MeV sd shell model with (USD) * interaction and experimental single particle energies (SPE) from 17 O and 17 F reproduce the energy shift qualitatively

Shell model calculations for 36 Ca – 36 S Monopol modification (USD m 1 ), deduced from Utsuno et al*.: *Y. Utsuno et al., Phys. Rev. C 60 (1999)  MED = -268 keV   gaps better reproduced!  how does it fit for other cases in sd-shell? MeV

* H. Herndl et al., Phys. Rev. C 52 (1995) 1078 P. Doornenbal et al., Phys. Lett. B647, 237 (2007). A. Gade et al. Phys. Rev. C 76, (2007) Mirror energy differences for T=1,2 nuclei Deviations from the classical shell model

odd neutron number odd proton number 25 Si- 25 Na 33 Ar- 33 Cl 29 S- 29 Al R.R. Reynolds et al. Phys. Rev. C 81, (2010) Mirror energy differences for T=3/2 nuclei Deviations from the classical shell model

Experimental and shell model status MED

Future: PreSPEC and AGATA LYCCA Beam Direction Detector at rear 10 ATC + 5 double Cluster detectors beam pipe diameter = 12cm chamber diameter = 46 cm S2´-configuration: 10 AGATA Triple Cluster + 5 double Cluster detectors γ-efficiency = 17.5% γγ-efficiency = 2.5% resolution (FWHM) intrinsic spatial resolution 8.5 keV5 mm 4 keV2 mm

PreSPEC fast-beam campaign great perspectives … AGATA increases  -sensitivity ≈ 10x LYCCA-0 provides mass resolution up to A ≈ 100 SIS/FRS intensities increase up to ≈ 10x Tracking det. and EDAQ upgrade increase max. rate and throughput 10x PreSPEC Fast Beam Campaign convener: W. Korten Very attractive and competitive spectroscopy themes Unique combination of beams, set-up and people

 Gammapool  M. Levitovicz, R. Krücken, W.Henning (request for EUROBALL)  PreSPEC (January 2011)  holding structure, digital electronics  GSI (April 2011)  I. Kojouharov, H. Schaffner, N. Kurz  RIKEN  financial support  beam preparation (2011) 124 Xe (GSI: 5·10 9 pps) 136 Xe (GSI: 5·10 9 pps) 238 U (GSI: 2·10 9 pps)  workshop on stopped beam experiments (spring 2011) Nuclei of interest A≤140 proposals (Japanese / European spokespersons)  TU Munich  Silicon Implantation Detector and Beta Absorber (SIMBA) 2012