12/3/2015 Based on text by S. Mourad "Priciples of Electronic Systems" and M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing for Digital,

Slides:



Advertisements
Similar presentations
CMP238: Projeto e Teste de Sistemas VLSI Marcelo Lubaszewski Aula 4 - Teste PPGC - UFRGS 2005/I.
Advertisements

Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 121 Lecture 12 Advanced Combinational ATPG Algorithms  FAN – Multiple Backtrace (1983)  TOPS – Dominators.
Appendix: Other ATPG algorithms 1. TOPS – Dominators Kirkland and Mercer (1987) n Dominator of g – all paths from g to PO must pass through the dominator.
Based on text by S. Mourad "Priciples of Electronic Systems" Digital Testing: Design Representation and Fault Detection
Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 13/12alt1 Lecture 13 Sequential Circuit ATPG Time-Frame Expansion (Lecture 12alt in the Alternative.
1 Lecture 10 Sequential Circuit ATPG Time-Frame Expansion n Problem of sequential circuit ATPG n Time-frame expansion n Nine-valued logic n ATPG implementation.
TOPIC : Backtracking Methodology UNIT 3 : VLSI Testing Module 3.2: Arriving at Input Test Vector.
Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 71 Lecture 7 Fault Simulation n Problem and motivation n Fault simulation algorithms n Serial n Parallel.
Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 91 Lecture 9 Combinational Automatic Test-Pattern Generation (ATPG) Basics n Algorithms and representations.
1 Lecture 11 Major Combinational Automatic Test-Pattern Generation Algorithms n Definitions n D-Algorithm (Roth) D-cubes Bridging faults Logic.
6/11/2015A Fault-Independent etc…1 A Fault-Independent Transitive Closure Algorithm for Redundancy Identification Vishal J. Mehta Kunal K. Dave Vishwani.
Copyright 2001, Agrawal & BushnellDay-1 PM Lecture 4b1 Design for Testability Theory and Practice Lecture 4b: Fault Simulation n Problem and motivation.
Modern VLSI Design 2e: Chapter 4 Copyright  1998 Prentice Hall PTR Topics n Switch networks. n Combinational testing.
Algorithms and representations Structural vs. functional test
Chapter 7: Testing Of Digital Circuits 1 Testing of Digital Circuits M. Balakrishnan Dept. of Comp. Sci. & Engg. I.I.T. Delhi.
Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 9alt1 Lecture 9alt Combinational ATPG (A Shortened version of Original Lectures 9-12) n ATPG problem.
Copyright 2001, Agrawal & BushnellDay-1 PM Lecture 61 Design for Testability Theory and Practice Lecture 6: Combinational ATPG n ATPG problem n Example.
Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 11alt1 Lecture 11alt Advances in Combinational ATPG Algorithms  Branch and Bound Search  FAN – Multiple.
Spring 08, Mar 27 ELEC 7770: Advanced VLSI Design (Agrawal) 1 ELEC 7770 Advanced VLSI Design Spring 2008 Fault Simulation Vishwani D. Agrawal James J.
Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 111 Lecture 11 Major Combinational Automatic Test-Pattern Generation Algorithms n Definitions n D-Algorithm.
Logic simulator and fault diagnosis Fan Wang Dept. of Electrical & Computer Engineering Auburn University ELEC7250 Term Project Spring 06’
Silicon Programming--Physical Testing 1 Testing--physical faults: yield; s-a-0 and s-a-1 faults; justify and propagate.
Spring 08, Apr 8 ELEC 7770: Advanced VLSI Design (Agrawal) 1 ELEC 7770 Advanced VLSI Design Spring 2008 Combinational Circuit ATPG Vishwani D. Agrawal.
Testing.
Introduction to IC Test
Unit II Test Generation
VLSI Testing Lecture 7: Combinational ATPG
Modern VLSI Design 3e: Chapter 5,6 Copyright  2002 Prentice Hall PTR Adapted by Yunsi Fei Topics n Sequential machine (§5.2, §5.3) n FSM construction.
Chapter 7. Testing of a digital circuit
10/14/2015 Based on text by S. Mourad "Priciples of Electronic Systems" Digital Testing: Testability Measures.
6/5/2016 Based on text by S. Mourad "Priciples of Electronic Systems" Digital Testing: Fault Simulation.
ECE 260B – CSE 241A Testing 1http://vlsicad.ucsd.edu ECE260B – CSE241A Winter 2005 Testing Website:
Universität Dortmund Chapter 6A: Validation Simulation and test pattern generation (TPG) EECE **** Embedded System Design.
Copyright 2001, Agrawal & BushnellLecture 6: Sequential ATPG1 VLSI Testing Lecture 6: Sequential ATPG n Problem of sequential circuit ATPG n Time-frame.
SOLUTION TO module 3.3. Feb.. 16, 2001VLSI Test: Bushnell-Agrawal/Lecture 112 Example 7.2 Fault A sa0 Step 1 – D-Drive – Set A = 1 D 1 D.
ECE 553: TESTING AND TESTABLE DESIGN OF DIGITAL SYSTES Combinational ATPG.
Technical University Tallinn, ESTONIA Test generation Gate-level methods  Functional testing: universal test sets  Structural test generation  Path.
Manufacture Testing of Digital Circuits
Digital Logic (Karnaugh Map). Karnaugh Maps Karnaugh maps (K-maps) are graphical representations of boolean functions. One map cell corresponds to a row.
A New ATPG Algorithm for 21 st Century: The wojoRithm John Sunwoo Electrical & Computer Engineering Auburn University, AL.
EE141 VLSI Test Principles and Architectures Test Generation 1 1 中科院研究生院课程: VLSI 测试与可测试性设计 第 5 讲 测试生成 (1) 李晓维 中科院计算技术研究所
TOPIC : Fault detection and fault redundancy UNIT 2 : Fault modeling Module 2.3 Fault redundancy and Fault collapsing.
Page 1EL/CCUT T.-C. Huang Apr TCH CCUT Introduction to IC Test Tsung-Chu Huang ( 黃宗柱 ) Department of Electronic Eng. Chong Chou Institute of Tech.
Lecture 9 Advanced Combinational ATPG Algorithms
VLSI Testing Lecture 6: Fault Simulation
Algorithms and representations Structural vs. functional test
CS137: Electronic Design Automation
Lecture 7 Fault Simulation
Definitions D-Algorithm (Roth) D-cubes Bridging faults
Lecture 13 Sequential Circuit ATPG Time-Frame Expansion
Definitions D-Algorithm (Roth) D-cubes Bridging faults
VLSI Testing Lecture 6: Fault Simulation
VLSI Testing Lecture 7: Combinational ATPG
CPE/EE 428, CPE 528 Testing Combinational Logic
Lecture 10 Sequential Circuit ATPG Time-Frame Expansion
ELEC Digital Logic Circuits Fall 2014 Logic Testing (Chapter 12)
CPE/EE 428, CPE 528 Testing Combinational Logic (5)
Automatic Test Generation for Combinational Circuits
CPE/EE 428, CPE 528 Testing Combinational Logic (2)
CPE/EE 428, CPE 528 Testing Combinational Logic (4)
VLSI Testing Lecture 8: Sequential ATPG
Lecture 12 Advanced Combinational ATPG Algorithms
A New ATPG Algorithm for 21st Century: The wojoRithm
Fault Models, Fault Simulation and Test Generation
CPE/EE 428, CPE 528 Testing Combinational Logic (3)
VLSI Testing Lecture 7: Combinational ATPG
Automatic Test Pattern Generation
ELEC Digital Logic Circuits Fall 2015 Logic Testing (Chapter 12)
Lecture 13 Sequential Circuit ATPG Time-Frame Expansion
CS137: Electronic Design Automation
Presentation transcript:

12/3/2015 Based on text by S. Mourad "Priciples of Electronic Systems" and M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits Digital Testing: Test Pattern Generation

12/3/2015Copyright©2001, Samiha Mourad2 Outline Types of Tests Deterministic Tests Notations and Basic Operations Design Verification Critical Path D-Algorithm Reconvergent Fanout PODEM Other Algorithms

12/3/2015Copyright©2001, Samiha Mourad3 Deterministic Tests NP-complete problem Algebraic: Boolean Difference General Fault Objective Critical Path Pseudo Random Algorithmic D-Algorithm Roth 1967 IBM PODEM Goel 1981 IBM FAN Fujiwara 1983 Kyoto U. Socrates Schultz 1988 Germany 0/1 propagation Rajski 1990

12/3/2015Copyright©2001, Samiha Mourad4 E=1 G3 G4 G5 G 6 W/1 U = 0 Z V H=1 F G G1 B=0 A=0 Justification Sensitization or Propagation G2 Implication C 0 Justification The Basic Operations W sa1 fault

Critical path tracing if only one input has controlling value => such input is critical if all inputs have value c’ => all inputs are critical A signal is critical if its change causes the gate output change

12/3/2015Copyright©2001, Samiha Mourad6 Critical Path G2 G3 G4 G5 X=0 W=1 U=0 Z=1 Y H=0 F=0 G=1 G1 A B=1 G2 G3 G4 G5 X=1 W=1 U Z=1 Y=1 H=1 F=1 G=0 G1 A=0 B=0 (a) (b) Critical signals

Critical path tracing critical signals C OutIn OutIn AND start with the OR output and NAND propagate path NOR towards input single all

Critical path tracing Example: Start with critical 0 c at the output and propagate the critical signals backwards abab c g dede hijkhijk l f

Critical path tracing Example : Make it critical by setting c to 1 Faults detected by the input (abde) = 0000 => a1, b1, d1, e1, h0, i0, j0, k0, l0 a b c d e f g h i j k l 0 C 1 C 1 C 1 C 1 C 0 C 1 0 C 1 0 C 0 C 1 abab c g dede hijkhijk l f

Critical path tracing Example: Find critical paths for q = 0 c abcdefghiabcdefghi jklmnjklmn opop q

Critical path tracing Example : a b c d e f g h i j k l m n o p q 0 C 0 C 0 C 0 C 1 C 0 C 1 1 C 1 C 1 C 1 C C 0 C 0 1 C abcdefghiabcdefghi jklmnjklmn opop q

Fault Oriented Algorithms

12/3/2015Copyright©2001, Samiha Mourad14 A Generic Test Algorithm Fault Oriented Algorithms

Function of NAND Gate c Input a 01XD XD X1XXXX D1X1 1DX1D D D D D D a b c D 1/0 0/1 D 1 Input b

D-Algorithm Use D-algebra Activate fault Place a D or D at fault site Do justification, forward implication and consistency check for all signals Repeatedly propagate D-chain toward POs through a gate Do justification, forward implication and consistency check for all signals Backtrack if A conflict occurs, or D-frontier becomes a null set Stop when D or D at a PO, i.e., test found, or If search exhausted without a test, then no test possible

Definitions Justification: Changing inputs of a gate if the present input values do not justify the output value. Forward implication: Determination of the gate output value, denoted as X, according to the input values. Consistency check: Verifying that the gate output is justifiable from the values of inputs, which may have changed since the output was determined. D-frontier: Set of gates whose inputs have a D or D, and the output is X.

Line justification in a fanout-free circuit Justify (l, val) begin set l to val if l is a PI then return /* l is a gate (output) */ c = controlling value of l i = inversion of l input_val = val  i if (input_val = c’) then for every input j of l Justify (j, input_val) --recursive call else begin select one input (j) of l Justify (j, input_val) end l0 l x0xx0x 1 l j j

Error propagation in a fanout-free circuit Propagate (l, err) /* err is D or D’ */ begin set l to err if l is PO then return k = the fanout of l c = controlling value of k i = inversion of k for every input j of k other than l Justify (j, c’) Propagate (k, err  i) end 1 err 1 err’ k l=

Definition: Singular Cover A singular cover defines the least restrictive inputs for a deterministic output value. Used for: Line justification: determine gate inputs for specified output. Forward implication: determine gate output. a b c XXXX 0 Examples:XX0 ∩ 110 = 110 0XX ∩ 0X1 = 0X1

Definition: D-Cubes D-cubes are singular covers with five-valued signals Used for D-drive (propagation of D through gates) and forward implication. a b c XDXD X Examples:XDX ∩ 1DD = 1DD 0DX ∩ 0D1 = 0D1 DDX ∩ DD1 = DD1

12/3/2015Copyright©2001, Samiha Mourad22 Operations PDCF Propagation D-cube Justification X = D (b) (a) D' D {W,X,F} ={ 1,D,D} A = 0 B = 0 W = 1 X = D F = D (c) {W,X,F} ={ 1,D,x} W = 1 F = x X = D W = 1 F = 1 E = x W = x E = x F = 1

set selected inputs to D (D’) set remaining inputs to c’ the output is D  i (D’  i) Example: For OR gate with (c=1, i=0) and input D set the remaining inputs to 0 and the output is D Propagation D-cubes

all inputs to c’ (c) if i = c one input to c (c’) if i’ = c (other don’t care) Example: for AND gate (c=0, i=0) and output equal to D (1/0) use all inputs equal to 1 Primitive D-cubes of fault for output equal to D (D’) set :

D-Intersection ∩01XD X01XD DDD D D D D Undefined State (conflict) D

12/3/2015Copyright©2001, Samiha Mourad26 Intersection Operation  01xDD’ 0 0  0  1  11  x 0 1x DD’ D  D D  D'  D’  D'  is the nul set, there is no intersection  the value depends on the context of the operation Rules to intersect D-cubes are the same as for generation of primitive D-cubes of faults

12/3/2015Copyright©2001, Samiha Mourad27 Set Operations

Testing for single stuck faults Error propagation in a fanout-free circuit Example : Propagate error in the following circuit j h i abcdeabcde f sa0 g

Testing for single stuck faults DjDj h i abcdeabcde f sa0 g 110x0110x0 D1D1 D0D0 Error propagation in a fanout-free circuit Example : Propagate error in the following circuit

Testing for single stuck faults Example : Propagate 6 sa0 fault in the circuit G1 G2 G3 G4 sa G5

Testing for single stuck faults Example : Propagate 6 sa0 fault in the circuit G1 G2 G3 G4 sa G5 D 0 D’ 1 D X

Testing for single stuck faults Example : G1 G2 G3 G4 G X 1 0 X 0 D 0 X 10 D D’1 D D’ 1 X 0 0 X D X 0 1D 0 D’ D 1 D’ D’ 1 1 0D D D’D D D’ singular pdcf singularpropagationpropagation cover coverD-cubeD-cube G1 G2 G3 G4 sa G5

Testing for single stuck faults Example : Resulting test for 6 sa0 : T = 10x branch X 0 D Y 0 X 0 D D’ Y 0 X 0 D 1 D’ D Y 0 X 0 0 D 1 D’ D N 1 0 X 0 0 D 1 D’ D N D-drive 1, select pdcf for 6 sa0 2, propagate through G4 3, propagate through G5 Consistency 4, use singular cover of G3 5, use singular cover of G1 G1 G2 G3 G4 sa G5

An Example: XOR a b a2 a1 b1 b2 c1 c c2 d e f Find tests for:c sa0 c1 sa0 c2 sa0

XOR: Test for c sa0 a b a2 a1 b1 b2 c1 c c2 d e f ActionOperationD-frontier 1.Activate faultc=1 or c=c1=c2=Dd, e 2.Justify c=10X1, a=a1=a2=0d, e 3.Forward impl a2=00D1, d=1e 4.Forward imp d=11XX, no implication possiblee 5.D-drive c2→eD1D, b2=b=b1=1, e=Df 6.Forward impl b1=1011, consistency checkedf 7.D-drive e→f1DD, f=DPO 8.Stop, test foundTest: (a,b) = (0, 1), f = 1

Test-Detect: XOR, Test (0,1) Determine good circuit signal values. For each fault Place a D or D at the fault site Perform forward implications Fault is detected if any PO assumes a D or D value a b a2 a1 b1 b2 c1 c c2 d e f b1 b2 D for c1 sa0 D for c2 sa0 D D 0D1 (null D-frontier) → c1 sa0 not detected D1D 1DX ∩ 1DD = 1DD, D at PO → c2 sa0 is detected

XOR: Test for c1 sa0 a b a2 a1 b1 b2 c1 c c2 d e f ActionOperationD-frontier 1.Activate faultc1=1 or c=c2=1, c1=Dd 2.Justify c=10X1, a=a1=a2=0 d 3.Forward impl a2=00D1, d=1null 4.Back-up, redo step 3No choice availablenull 5.Back-up, redo step 2X01, b=b1=b2=0, a=X, d=Xd 6.Forward impl b2=0101, e=1d 7.Forward impl e=1X1X, no implication possibled 8.D-drive c1→d1DD, a2=a=a1=1,d=Df 9.Forward impl a1=1101, consistency checkedf 10.Forward impl d=DD1D, f=DPO 11.Stop, test foundTest: (a,b) = (1, 0), f = 1

An Example The circuit will be used to illustrate the D-algorithm for faults on three different nodes an internal node X a primary input Y a primary output Z

12/3/2015Copyright©2001, Samiha Mourad39 Node X sa0 Fault

12/3/2015Copyright©2001, Samiha Mourad40 Compact Table

12/3/2015Copyright©2001, Samiha Mourad41 Input Y sa1 Fault 1OperationGateABXYWUFGHZ 2Initializationxxxxxxxxxx 3PDCFYxxxD’xxxxxx 4D frontierG4xxxD’xx1x x 5ImplicationF=1xxxD’xx10 x 6D frontierG5xxx D’ xx10 7JustificationF =1xx1D’1 x  0 D' 8JustificationX= D’1x  0 D'

12/3/2015Copyright©2001, Samiha Mourad42 Output Z sa0 Fault

Multiple-Valued Algebras Symbol D 0 1 X G0 G1 F0 F1 Alternative Representation 1/0 0/1 0/0 1/1 X/X 0/X 1/X X/0 X/1 Faulty Circuit X 0 1 Fault-free circuit X 0 1 X Roth’s Algebra Muth’s Additions

Complexity of D-Algorithm Signal values on all lines (PIs and internal lines) are manipulated using 5-valued algebra. Worst-case combinations of signals that may be tried is 5 #lines For XOR circuit, 5 12 = 244,140,625. Podem: A reduced-complexity ATPG algorithm Recognizes that internal signals depend on PIs. Only PIs are independent variables and should be manipulated. Because faults are internal, a PI can assume only 3 values (0, 1, X). Worst-case combinations = 3 #PI ; for XOR circuit, 3 2 = 8.

Podem: Path oriented decision making Step 1: Define an objective (fault activation, D-drive, or line justification) Step 2: Backtrace from site of objective to PIs (use testability measure guidance) to determine a value for a PI Step 3: Simulate logic with new PI value If objective not accomplished but is possible, then continue backtrace to another PI (step 2) If objective accomplished and test not found, then define new objective (step 1) If objective becomes impossible, try alternative backtrace (step 2) Use X-PATH-CHECK to test whether D-frontier still there – a path of X’s from a D-frontier to a PO must exist. Podem Algorithm

XOR Example Again (1,1)6 (3,2)5 (4,2)3 (5,5) Compute SCOAP testability measures: (CC0,CC1)CO 7 7

Podem: Objective and Backtrace (1,1)6 (3,2)5 (4,2)3 (5,5) sa0 1. Objective 1: set fault site to 1 0 2&3. Backtrace to a PI and simulate 1 1 D X-path check fails → Back up: Erase effects of steps 2&3 Try alternative backtrace 7 7

Podem: Back up (1,1)6 (3,2)5 (4,2)3 (5,5) sa0 1. Objective 1: set fault site to 1 0 4&5. Alt. backtrace to a PI and simulate 1 1 D X-path check: OK Objective 1 achieved X-path 7 7

Podem: D-Drive (1,1)6 (3,2)5 (4,2)3 (5,5) sa0 4. Objective 2: D-drive, set line to Backtrace to a PI and simulate 1 1 D 1 D D 0 D at PO →Test found 7 7

Another Podem Example 1. Objective “0” 2. Backtrace “A=0” 3. Logic simulation for A=0 (9, 2) S-a Objective possible but not accomplished yet

Podem Example (Cont.) 1. Objective “0”5. Backtrace “B=0”6. Logic simulation for A=0, B=0 7. Objective possible but not accomplished yet (9, 2) S-a

Podem Example (Cont.) 9. Logic simulation for E=0 10. Objective possible but not accomplished yet (9, 2) 0 S-a-1 1. Objective “0” 0 8. Backtrace “E=0”

Podem Example (Cont.) 11. Backtrace “D=0” 12. Logic simulation for D=0 13. Objective accomplished (9, 2) S-a-1 1. Objective “0”

12/3/2015Copyright©2001, Samiha Mourad57 PODEM Flowchart

12/3/2015Copyright©2001, Samiha Mourad58 PODEM Example E sa1 Fault U W X Assign x to all inputs 2.Assigning 0 to the primary input, U, causes E = 1; hence, this choice does not further our goal and it is discarded. Then U =1 3.We proceed with W = 1. The implication of this value is not furthering the objective nor is it blocking it. 4.X = 1 is rejected and X=0 is selected. 5.This Implies F=0, H=0 and we can propagate D’ on G, then D on the primary output, Z. =D’ G2 G3 G1 G4 G5 X W U Z Y H F G E =D

12/3/2015Copyright©2001, Samiha Mourad59 PODEM Example G sa1 Fault 1.Assign x to all inputs 2.Assigning 0 to the primary input, W, causes G = 1; hence, this choice is discarded. Then W =1 which causes F=0. 3.We proceed with X = 1. The implication of this value is not furthering the objective nor is it blocking it. 4.Similarly V=1 is selected. 5.E=1 is rejected, so E=0 which implies I=1 and we can propagate D on the primary output, Z. =D’ =D

12/3/2015Copyright©2001, Samiha Mourad60 Other Algorithms FAN A variation of PODEM with better heuristic to prune the search tree for backtracking Socrates A variation of FAN using testability analysis to cut down on backtracking

12/3/2015Copyright©2001, Samiha Mourad61 Comparing FAN to PODEM Computing TimeAverage Backtracks%age of Faults Aborted CircuitPODEMFANPODEMFANPODEMFAN

Multi fault detection with 01 sequence (Dr. Janusz Rajski) 1, Drive backward from output 01 to establish 2 test vectors 2, Propagate forward (with fault effects) 3, Analyze the results (backward)

Rajski’s method Example : ABCE = (00, 11, 01, 11) G7 01,11,0 0 E=11,00 A=00,11 B’=00,11 C=01,00,11 B=11,00 G2=01,00,11 G3=00,11 G4=10,11,00 G5=01,11,00 G1=01,00,11 G8=00,11 G6=00,10,11 If single fault

Rajski’s method Example : ABCE = (00, 11, 00, 10) G7=01 E=10,11 A=00 B’=00,11 C=00 B=11 G1=00 G2=00 G3=01,00,11 G4=11,00 G6=01,00 G8=01,00,11 G5=00

Rajski’s method Example : ABCE = (10, 00, 00, xx) G7=01 E=xx A=10 B’=11 C=00 B=00,11 G1=00 G2=10 G3=11 G4=01 G5=00,10 G6=01

Rajski’s method Example : multiple faults coverage sa1sa0 Ax3 B3x Cxx E2x G1xx G2xx G3x2 G432 G5xx G6x2 G7xx G8x2

Rajski’s method Example : 01,11,00 abcdefabcdef Z ghgh 00,11 01,11,00 11,00 01,00,11 00,11 01,11,00 00,11 11,00 01,11,0000,11 h1 = 01,11,00 h2 = 01,11,00 i j k Multiple faults sa0sa1 ax bx cxx dx ex fx gx hxx h1x h2x ix jx kxx Zxx

Rajski’s method 01,00,11 abcdefabcdef Z ghgh 10,00,11 11,00 01,00,11 00,11 11,00 01,00,11 11,00 00,11 11,00 01,00,1100,11 h1 = 11,00 h2 = 11,00 i j k if single fault sa0sa1 a2x bx cxx dx ex fx gx2 hxx h1x h2x ix2 jx kxx Zxx Example :

Rajski’s method G7 01,11,0 0 Example : ABCE = (00, 11, 01, 11) single fault test – critical signals are underlined E=11,00 A=00,11 B’=00,11 C=01,00,11 B=11,00 G2=01,00,11 G3=00,11 G4=10,11,00 G5=01,11,00 G1=01,00,11 G8=00,11 G6=00,10,11

Example : Using Rajski’s method

01,00,11 10,00,11 00,11 10,00,11 01,00,11 00,11 11,00 00,11 11, ,11 Example : Using Rajski’s method