Homework Complete Problems: Complete all work in pencil

Slides:



Advertisements
Similar presentations
FORCE VECTORS, VECTOR OPERATIONS & ADDITION COPLANAR FORCES
Advertisements

FORCE VECTORS, VECTOR OPERATIONS & ADDITION COPLANAR FORCES Today’s Objective: Students will be able to : a) Resolve a 2-D vector into components. b) Add.
APPLICATION OF VECTOR ADDITION
Students will be able to : a) Resolve a 2-D vector into components
WHAT IS MECHANICS? Either the body or the forces could be large or small. Study of what happens to a “ thing ” (the technical name is “ BODY ” ) when FORCES.
MOMENT OF A FORCE (SCALAR FORMULATION), CROSS PRODUCT, MOMENT OF A FORCE (VECTOR FORMULATION), & PRINCIPLE OF MOMENTS Today’s Objectives : Students will.
3 – D VECTORS (Section 2.5) Today’s Objectives: Students will be able to : a) Represent a 3-D vector in a Cartesian coordinate system. b) Find the magnitude.
POSITION & FORCE VECTORS (Sections ) Today’s Objectives: Students will be able to : a) Represent a position vector in Cartesian coordinate form,
Force System in Three Dimension
EQUILIBRIUM OF A PARTICLE IN 3-D (Section 3.4)
3 – D VECTORS (Section 2.5) Today’s Objectives: Students will be able to : a) Represent a 3-D vector in a Cartesian coordinate system. b) Find the magnitude.
DOT PRODUCT (Section 2.9) Today’s Objective:
Today’s Objectives: Students will be able to :
VECTORS in 3-D Space Vector Decomposition Addition of Vectors:
Vectors in Physics (Continued)
MOMENT ABOUT AN AXIS Today’s Objectives:
ENGINEERING MECHANICS STATICS & DYNAMICS
CARTESIAN VECTORS AND THEIR ADDITION & SUBTRACTION
EQUIVALENT SYSTEMS, RESULTANTS OF FORCE AND COUPLE SYSTEM, & FURTHER REDUCTION OF A FORCE AND COUPLE SYSTEM Today’s Objectives: Students will be able.
Vector Operation and Force Analysis
Scalar and Vector Fields
4.6 Moment due to Force Couples
POSITION VECTORS & FORCE VECTORS
MOMENT ABOUT AN AXIS In-Class Activities: Check Homework Reading Quiz Applications Scalar Analysis Vector Analysis Concept Quiz Group Problem Solving Attention.
MOMENT ABOUT AN AXIS Today’s Objectives: Students will be able to determine the moment of a force about an axis using a) scalar analysis, and b) vector.
QUIZ #2 If cable CB is subjected to a tension that is twice that of cable CA, determine the angle Θ for equilibrium of the 10-kg cylinder. Also, what are.
POSITION & FORCE VECTORS (Sections ) Today’s Objectives: Students will be able to : a) Represent a position vector in Cartesian coordinate form,
POSITION VECTORS & FORCE VECTORS In-Class Activities: Check Homework Reading Quiz Applications / Relevance Write Position Vectors Write a Force Vector.
Copyright © 2010 Pearson Education South Asia Pte Ltd
POSITION VECTORS & FORCE VECTORS
Scalars A scalar is any physical quantity that can be completely characterized by its magnitude (by a number value) A scalar is any physical quantity that.
Force Vector (cont’).
DOT PRODUCT In-Class Activities: Check Homework Reading Quiz Applications / Relevance Dot product - Definition Angle Determination Determining the Projection.
Lecture #3 Additional Methods of Vector Analysis (Ref: Section 2.7 and 2.8, position vectors and force vector directed along a line) R. Michael PE 8/14/2012.
Professor Martinez. COMMON CONVERSION FACTORS  1 ft = m  1 lb = N  1 slug = kg  Example: Convert a torque value of 47 in lb.
FORCE VECTORS, VECTOR OPERATIONS & ADDITION COPLANAR FORCES In-Class activities: Check Homework Reading Quiz Application of Adding Forces Parallelogram.
HWQ Find the xy trace:.
Engineering Mechanics: Statics Chapter 2: Force Vectors Chapter 2: Force Vectors.
MOMENT OF A FORCE SCALAR FORMULATION, CROSS PRODUCT, MOMENT OF A FORCE VECTOR FORMULATION, & PRINCIPLE OF MOMENTS Today’s Objectives : Students will be.
Nature is beautiful nature is fun love it or hate it nature is something to love nature is god's gift to us Nature is what we see...
Midterm Review  Five Problems 2-D/3-D Vectors, 2-D/3-D equilibrium, Dot Product, EoE, Cross Product, Moments  Closed Book & Note  Allowed to bring.
THREE-DIMENSIONAL FORCE SYSTEMS In-class Activities: Check Homework Reading Quiz Applications Equations of Equilibrium Concept Questions Group Problem.
MOMENT OF A FORCE (Section 4.1) Today’s Objectives : Students will be able to: a) understand and define moment, and, b) determine moments of a force in.
Homework Review (Ch. 1 & 2) 1-6 (pg. 15) 1-8 (pg. 15) 2-10 (pg. 28) 2-32 (pg. 39) 2-57 (pg. 42)  Any questions???
MOMENT ABOUT AN AXIS Today’s Objectives: Students will be able to determine the moment of a force about an axis using a) scalar analysis, and b) vector.
POSITION VECTORS & FORCE VECTORS
SIMPLIFICATION OF FORCE AND COUPLE SYSTEMS & FURTHER SIMPLIFICATION OF A FORCE AND COUPLE SYSTEM Today’s Objectives: Students will be able to: a)Determine.
EQUIVALENT SYSTEMS, RESULTANTS OF FORCE AND COUPLE SYSTEM, & FURTHER REDUCTION OF A FORCE AND COUPLE SYSTEM Today’s Objectives: Students will be able to:
Statics, Fourteenth Edition R.C. Hibbeler Copyright ©2016 by Pearson Education, Inc. All rights reserved. In-Class Activities: Check Homework Reading Quiz.
Statics, Fourteenth Edition R.C. Hibbeler Copyright ©2016 by Pearson Education, Inc. All rights reserved. In-Class Activities: Reading Quiz Applications/Relevance.
Statics, Fourteenth Edition R.C. Hibbeler Copyright ©2016 by Pearson Education, Inc. All rights reserved. In-Class activities: Check Homework Reading Quiz.
Statics, Fourteenth Edition R.C. Hibbeler Copyright ©2016 by Pearson Education, Inc. All rights reserved. In-class Activities: Check Homework Reading Quiz.
FORCE VECTORS, VECTOR OPERATIONS & ADDITION COPLANAR FORCES
POSITION VECTORS & FORCE VECTORS
CARTESIAN VECTORS AND THEIR ADDITION & SUBTRACTION
Engineering Mechanics Statics
Lecture #2 (ref Ch 2) Vector Operation and Force Analysis 1 R. Michael PE 8/14/2012.
CARTESIAN VECTORS & ADDITION & SUBTRACTION OF CARTESIAN VECTORS
CARTESIAN VECTORS & ADDITION & SUBTRACTION OF CARTESIAN VECTORS
Statics Course Code: CIVL211 Dr. Aeid A. Abdulrazeg
Cartesian Vectors In right-handed Cartesian coordinated system, the right thumb points in the positive z direction when the right hand figures are curled.
Cartesian Vectors In right-handed Cartesian coordinated system, the right thumb points in the positive z direction when the right hand figures are curled.
Answers: 1. D 2. B READING QUIZ
CARTESIAN VECTORS AND THEIR ADDITION & SUBTRACTION
Cartesian Vectors In right-handed Cartesian coordinated system, the right thumb points in the positive z direction when the right hand figures are curled.
Engineering Mechanics : STATICS
POSITION VECTORS & FORCE VECTORS
Cartesian Vectors In right-handed Cartesian coordinated system, the right thumb points in the positive z direction when the right hand figures are curled.
CHAPTER 2 FORCE VECTOR.
POSITION VECTORS & FORCE VECTORS
Presentation transcript:

Homework Complete Problems: Complete all work in pencil 1-6 (pg. 15) 1-8 (pg. 15) 2-10 (pg. 28)* 2-32 (pg. 39)* 2-57 (pg. 42)* Complete all work in pencil Grading on 1-5 scale Looking for thoroughness (don’t just write the answer) Due next Thursday at beginning of class

ATTENTION Review 1. Resolve F along x and y axes and write it in vector form. F = { ___________ } N A) 80 cos (30°) i - 80 sin (30°) j B) 80 sin (30°) i + 80 cos (30°) j C) 80 sin (30°) i - 80 cos (30°) j D) 80 cos (30°) i + 80 sin (30°) j 30° x y F = 80 N 2. Determine the magnitude of the resultant (F1 + F2) force in N when F1 = { 10 i + 20 j } N and F2 = { 20 i + 20 j } N . A) 30 N B) 40 N C) 50 N D) 60 N E) 70 N Answers: 1. C 2. C Statics:The Next Generation (2nd Ed.) Mehta, Danielson, & Berg Lecture Notes for Sections 2.1,2.2,2.4

CARTESIAN VECTORS & ADDITION & SUBTRACTION OF CARTESIAN VECTORS Today’s Objectives: Students will be able to : a) Represent a 3-D vector in a Cartesian coordinate system. b) Find the magnitude and coordinate angles of a 3-D vector c) Add vectors (forces) in 3-D space In-Class Activities: Reading Review Applications / Relevance A Unit Vector 3-D Vector Terms Adding Vectors Concept Review Examples Attention Review Statics:The Next Generation (2nd Ed.) Mehta, Danielson, & Berg Lecture Notes for Sections 2.5,2.6

A) Euclidean B) left-handed C) Greek D) right-handed E) Egyptian READING Review 1. Vector algebra, as we are going to use it, is based on a ___________ coordinate system. A) Euclidean B) left-handed C) Greek D) right-handed E) Egyptian 2. The symbols , , and  designate the __________ of a 3-D Cartesian vector. A) unit vectors B) coordinate direction angles C) Greek societies D) x, y and z components Answers: 1. D 2. B Statics:The Next Generation (2nd Ed.) Mehta, Danielson, & Berg Lecture Notes for Sections 2.5,2.6

Many problems in real-life involve 3-Dimensional Space. APPLICATIONS Many problems in real-life involve 3-Dimensional Space. How will you represent each of the cable forces in Cartesian vector form? Statics:The Next Generation (2nd Ed.) Mehta, Danielson, & Berg Lecture Notes for Sections 2.5,2.6

APPLICATIONS (continued) Given the forces in the cables, how will you determine the resultant force acting at D, the top of the tower? Statics:The Next Generation (2nd Ed.) Mehta, Danielson, & Berg Lecture Notes for Sections 2.5,2.6

Characteristics of a unit vector: a) Its magnitude is 1. For a vector A with a magnitude of A, a unit vector is defined as UA = A / A . Characteristics of a unit vector: a) Its magnitude is 1. b) It is dimensionless. c) It points in the same direction as the original vector (A). The unit vectors in the Cartesian axis system are i, j, and k. They are unit vectors along the positive x, y, and z axes respectively. Statics:The Next Generation (2nd Ed.) Mehta, Danielson, & Berg Lecture Notes for Sections 2.5,2.6

3-D CARTESIAN VECTOR TERMINOLOGY Consider a box with sides AX, AY, and AZ meters long. The vector A can be defined as A = (AX i + AY j + AZ k) m The projection of the vector A in the x-y plane is A´. The magnitude of this projection, A´, is found by using the same approach as a 2-D vector: A´ = (AX2 + AY2)1/2 . The magnitude of the position vector A can now be obtained as A = ((A´)2 + AZ2) ½ = (AX2 + AY2 + AZ2) ½ Statics:The Next Generation (2nd Ed.) Mehta, Danielson, & Berg Lecture Notes for Sections 2.5,2.6

3-D CARTESIAN VECTOR TERMINOLOGY (continued) The direction or orientation of vector A is defined by the angles , , and . These angles are measured between the vector and the positive X, Y and Z axes, respectively. Their range of values are from 0° to 180° Using trigonometry, “direction cosines” are found using the formulas These angles are not independent. They must satisfy the following equation. cos ²  + cos ²  + cos ²  = 1 This result can be derived from the definition of a coordinate direction angles and the unit vector. Recall, the formula for finding the unit vector of any position vector: or written another way, u A = cos  i + cos  j + cos  k . Statics:The Next Generation (2nd Ed.) Mehta, Danielson, & Berg Lecture Notes for Sections 2.5,2.6

ADDITION/SUBTRACTION OF VECTORS (Section 2.6) Once individual vectors are written in Cartesian form, it is easy to add or subtract them. The process is essentially the same as when 2-D vectors are added. For example, if A = AX i + AY j + AZ k and B = BX i + BY j + BZ k , then A + B = (AX + BX) i + (AY + BY) j + (AZ + BZ) k or A – B = (AX - BX) i + (AY - BY) j + (AZ - BZ) k . Statics:The Next Generation (2nd Ed.) Mehta, Danielson, & Berg Lecture Notes for Sections 2.5,2.6

Sometimes 3-D vector information is given as: IMPORTANT NOTES Sometimes 3-D vector information is given as: a) Magnitude and the coordinate direction angles, or b) Magnitude and projection angles. You should be able to use both these types of information to change the representation of the vector into the Cartesian form, i.e., F = {10 i – 20 j + 30 k} N . Statics:The Next Generation (2nd Ed.) Mehta, Danielson, & Berg Lecture Notes for Sections 2.5,2.6

EXAMPLE Given: Two forces F and G are applied to a hook. Force F is shown in the figure and it makes a 60° angle with the X-Y plane. Force G is pointing up and has a magnitude of 80 lb with  = 111° and  = 69.3°. Find: The resultant force in the Cartesian vector form. G 1) Using geometry and trigonometry, write F and G in the Cartesian vector form. 2) Then add the two forces. Statics:The Next Generation (2nd Ed.) Mehta, Danielson, & Berg Lecture Notes for Sections 2.5,2.6

Solution : First, resolve force F. Fz = 100 sin 60° = 86.60 lb F' = 100 cos 60° = 50.00 lb Fx = 50 cos 45° = 35.36 lb Fy = 50 sin 45° = 35.36 lb Now, you can write: F = {35.36 i – 35.36 j + 86.60 k} lb Statics:The Next Generation (2nd Ed.) Mehta, Danielson, & Berg Lecture Notes for Sections 2.5,2.6

Recall the formula cos ² () + cos ² () + cos ² () = 1. Now resolve force G. We are given only  and . Hence, first we need to find the value of . Recall the formula cos ² () + cos ² () + cos ² () = 1. Now substitute what we know. We have cos ² (111°) + cos ² (69.3°) + cos ² () = 1. Solving, we get  = 30.22° or 120.2°. Since the vector is pointing up,  = 30.22° Now using the coordinate direction angles, we can get UG, and determine G = 80 UG lb. G = {80 ( cos (111°) i + cos (69.3°) j + cos (30.22°) k )} lb G = {- 28.67 i + 28.28 j + 69.13 k } lb Now, R = F + G or R = {6.69 i – 7.08 j + 156 k} lb Statics:The Next Generation (2nd Ed.) Mehta, Danielson, & Berg Lecture Notes for Sections 2.5,2.6

GROUP PROBLEM SOLVING Given: The screw eye is subjected to two forces. Find: The magnitude and the coordinate direction angles of the resultant force. Plan: 1) Using the geometry and trigonometry, write F1 and F2 in the Cartesian vector form. 2) Add F1 and F2 to get FR . 3) Determine the magnitude and , ,  . Statics:The Next Generation (2nd Ed.) Mehta, Danielson, & Berg Lecture Notes for Sections 2.5,2.6

GROUP PROBLEM SOLVING (continued) First resolve the force F1 . F1z = 300 sin 60° = 259.8 N F´ = 300 cos 60° = 150.0 N F1z F´ F’ can be further resolved as, F1x = -150 sin 45° = -106.1 N F1y = 150 cos 45° = 106.1 N Now we can write : F1 = {-106.1 i + 106.1 j + 259.8 k } N Statics:The Next Generation (2nd Ed.) Mehta, Danielson, & Berg Lecture Notes for Sections 2.5,2.6

GROUP PROBLEM SOLVING (continued) The force F2 can be represented in the Cartesian vector form as: F2 = 500{ cos 60° i + cos 45° j + cos 120° k } N = { 250 i + 353.6 j – 250 k } N FR = F1 + F2 = { 143.9 i + 459.6 j + 9.81 k } N FR = (143.9 2 + 459.6 2 + 9.81 2) ½ = 481.7 = 482 N  = cos-1 (FRx / FR) = cos-1 (143.9/481.7) = 72.6°  = cos-1 (FRy / FR) = cos-1 (459.6/481.7) = 17.4°  = cos-1 (FRz / FR) = cos-1 (9.81/481.7) = 88.8° Statics:The Next Generation (2nd Ed.) Mehta, Danielson, & Berg Lecture Notes for Sections 2.5,2.6

1. If you know just UA, you can determine the ________ of A uniquely. CONCEPT QUESTIONS 1. If you know just UA, you can determine the ________ of A uniquely. A) magnitude B) angles (,  and ) C) components (AX, AY, & AZ) D) All of the above. 2. For an arbitrary force vector, the following parameters are randomly generated. Magnitude is 0.9 N,  = 30º,  = 70º,  = 100º. What is wrong with this 3-D vector ? A) Magnitude is too small. B) Angles are too large. C) All three angles are arbitrarily picked. D) All three angles are between 0º to 180º. Answers: 1. B 2. C Statics:The Next Generation (2nd Ed.) Mehta, Danielson, & Berg Lecture Notes for Sections 2.5,2.6

1. What is not true about a unit vector, UA ? A) It is dimensionless. ATTENTION Review 1. What is not true about a unit vector, UA ? A) It is dimensionless. B) Its magnitude is one. C) It always points in the direction of positive X- axis. D) It always points in the direction of vector A. 2. If F = {10 i + 10 j + 10 k} N and G = {20 i + 20 j + 20 k } N, then F + G = { ____ } N A) 10 i + 10 j + 10 k B) 30 i + 20 j + 30 k C) -10 i - 10 j - 10 k D) 30 i + 30 j + 30 k Answers: 1. C 2. D Statics:The Next Generation (2nd Ed.) Mehta, Danielson, & Berg Lecture Notes for Sections 2.5,2.6

End of the Lecture Let Learning Continue Statics:The Next Generation (2nd Ed.) Mehta, Danielson, & Berg Lecture Notes for Sections 2.5,2.6