MICROWAVE SPECTRUM OF 12 C 16 O S.A. TASHKUN and S.N. MIKHAILENKO, Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, Zuev.

Slides:



Advertisements
Similar presentations
Water monomer linelists Matt Barber Jonathan Tennyson Department of Physics and Astronomy University College London December 2009.
Advertisements

A fitting program for molecules with two equivalent methyl tops and C 2v point-group symmetry at equilibrium: Application to existing microwave, millimeter,
High sensitivity CRDS of the a 1 ∆ g ←X 3 Σ − g band of oxygen near 1.27 μm: magnetic dipole and electric quadrupole transitions in different bands of.
Progress Towards Obtaining Lineshape Parameters Using Chirped Pulse THz Spectroscopy Eyal Gerecht, Kevin O. Douglass, David F. Plusquellic National Institute.
Analysis of an 18 O and D enhanced lab water spectrum using variational calculations of HD 18 O and D 2 18 O spectra Michael J Down - University College.
Analysis of the 18 O 3 CRDS spectra in the 6000 – 7000 cm -1 spectral range : comparison with 16 O 3. Marie-Renée De Backer-Barilly, Alain Barbe, Vladimir.
The Water Molecule: Line Position and Line Intensity Analyses up to the Second Triad L. H. Coudert, a G. Wagner, b M. Birk, b and J.-M. Flaud a a Laboratoire.
High-Lying Rotational Levels of Water obtained by FIR Emission Spectroscopy L. H. Coudert, a M.-A. Martin, b O. Pirali, b D. Balcon, b and M. Vervloet.
Theoretical work on the water monomer and dimer Matt Barber Jonathan Tennyson University College London September 2009.
June 23rdJPL Spectral Line Catalog Brian J. Drouin, Herbert M. Pickett.
S&MPO linelist of 16 O 3 in the range 6000 – 7000 cm -1. M.-R. De Backer-Barilly #, Semen N. Mikhailenko*, Yurii Babikov*, Alain Campargue §, Samir Kassi.
9th Biennal HITRAN Conference Harvard-Smithsonian Center for Astrophysics June 26–28, 2006 GLOBAL FREQUENCY AND INFRARED INTENSITY ANALYSIS OF 12 CH 4.
 ( ) 0+   ( ) 0–  4 1 Results at 2.5 microns 2 +( ) 1 II (
A.Perrin: Ohio-State 62th Molecular Symposium, June 2007 New analysis of the 3 & 4 bands of HNO 3 by high resolution Fourier transform spectroscopy in.
Jet Propulsion Laboratory California Institute of Technology 1 V-1 11 th HITRAN Conference, Cambridge, MA, June 16-18, 2010 The importance of being earnest.
Information System to Access HITRAN via the Internet Yu. L. Babikov, S. N. Mikhailenko, S. A. Tashkun, V.E. Zuev Institute of Atmospheric Optics, Tomsk,
Observations of SO 2 spectra with a quantum cascade laser spectrometer around 1090 and 1160 cm -1. Comparison with HITRAN database and updated calculations.
Molecular Databases: Evolution and Revolution Laurence S. Rothman Iouli E. Gordon Harvard-Smithsonian Center for Astrophysics Atomic and Molecular Physics.
Towards New Line List of Magnetic Dipole and Electric Quadrupole Transitions in the Band of Oxygen Iouli E. Gordon Laurence S. Rothman Samir Kassi Alain.
SPECTRA, an Internet Accessible Information System for Spectroscopy of Atmospheric Gases Semen MIKHAILENKO, Yurii BABIKOV, Vladimir.
Experimental Energy Levels of HD 18 O and D 2 18 O S.N. MIKHAILENKO, O.V. NAUMENKO, S.A. TASHKUN Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute.
First high resolution analysis of the 5 3 band of nitrogen dioxide (NO 2 ) near 1.3 µm Didier Mondelain 1, Agnès Perrin 2, Samir Kassi 1 & Alain Campargue.
CDSD-4000: high-temperature spectroscopic CO 2 databank S.A. Tashkun, V.I. Perevalov Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric.
Columbus 2005, 20/6/ /6/05 ANALYSIS OF THE 3 / 7 / 9 BENDING TRIAD OF THE QUASI-SPHERICAL TOP MOLECULE SO 2 F 2 M. Rotger, V. Boudon, M. Lo ë te,
Jet Propulsion Laboratory California Institute of Technology The College of William and MaryUniversity of Lethbridge.
Molecular Spectroscopy Symposium June 2011 ROTATIONAL SPECTROSCOPY OF HD 18 O John C. Pearson, Shanshan Yu, Harshal Gupta, and Brian J. Drouin,
Spectral Line Parameters Including Temperature Dependences of N 2 - and Self-broadened Widths in the Region of the 9 band of C 2 H 6 using a Multispectrum.
New H 2 16 O measurements of line intensities around 1300 cm -1 and 8800 cm - 1 Oudot Charlotte Groupe de Spectrométrie Moléculaire et Atmosphérique Reims,
Hot summer of HITRAN2008 I. E. Gordon L. S. Rothman.
Emission Spectra of H 2 17 O and H 2 18 O from 320 to 2500 cm -1 Semen MIKHAILENKO 1, Georg MELLAU 2, and Vladimir TYUTEREV 3 1 Laboratory of Theoretical.
Measurements of N 2 - and O 2 -pressure broadening and pressure-induced shifts for 16 O 12 C 32 S transitions in the 3 band M.A. Koshelev and M.Yu. Tretyakov.
Molecular Spectroscopy Symposium June 2011 TERAHERTZ SPECTROSCOPY OF HIGH K METHANOL TRANSITIONS John C. Pearson, Shanshan Yu, Harshal Gupta,
“Global Fit” of the high resolution infrared data of D 2 S and HDS molecules O. N. Ulenikov, E. S. Bekhtereva Physical Chemistry, ETH-Zurich, CH-8093 Zurich,
Methyl Bromide : Spectroscopic line parameters in the 7- and 10-μm region D. Jacquemart 1, N. Lacome 1, F. Kwabia-Tchana 1, I. Kleiner 2 1 Laboratoire.
Electronic Spectroscopy of Palladium Dimer (Pd 2 ) 68th OSU International Symposium on Molecular Spectroscopy Yue Qian, Y. W. Ng and A. S-C. Cheung Department.
Xinchuan Huang, 1 David W. Schwenke, 2 Timothy J. Lee 2 1 SETI Institute, Mountain View, CA 94043, USA 2 NASA Ames Research Center, Moffett Field, CA 94035,
Methyl Bromide : Spectroscopic line parameters in the 10-μm region D. Jacquemart 1, N. Lacome 1, F. Kwabia-Tchana 1, I. Kleiner 2 1 Laboratoire de Dynamique,
Electronic Spectroscopy of DHPH Revisited: Potential Energy Surfaces along Different Low Frequency Coordinates Leonardo Alvarez-Valtierra and David W.
Evaluation of the Experimental and Theoretical Intensities of Water- Vapor Lines in the 2 µm Region Using Spectra from the Solar- Pointing FTS Iouli Gordon,
HIGH PRECISION MID-IR SPECTROSCOPY OF N2O NEAR 4.5 μm Wei-jo (Vivian) Ting and Jow-Tsong Shy Department of Physics National Tsing Hua University Hsinchu,
Precision Measurement of CO 2 Hotband Transition at 4.3  m Using a Hot Cell PEI-LING LUO, JYUN-YU TIAN, HSHAN-CHEN CHEN, Institute of Photonics Technologies,
Molecular Spectroscopy Symposium June 2013 Modeling the Spectrum of the 2 2 and 4 States of Ammonia to Experimental Accuracy John C. Pearson.
Pressure-broadening of water lines in the THz frequency region: improvements and confirmations for spectroscopic databases G. Cazzoli, C. Puzzarini Dipartimento.
Atusko Maeda, Ivan Medvedev, Eric Herbst,
Line list of HD 18 O rotation-vibration transitions for atmospheric applications Semen MIKHAILENKO, Olga NAUMENKO, and Sergei TASHKUN Laboratory of Theoretical.
CDSD (Carbon Dioxide Spectroscopic Databank): Updated and Enlarged Version for Atmospheric Applications Sergei Tashkun and Valery Perevalov Laboratory.
Undergrad Students Michael Friedman Jesse Hopkins Brian Bresslauer
Preliminary modeling of CH 3 D from 4000 to 4550 cm -1 A.V. Nikitin 1, L. R. Brown 2, K. Sung 2, M. Rey 3, Vl. G. Tyuterev 3, M. A. H. Smith 4, and A.W.
69th Meeting - Champaign-Urbana, Illinois, 2014 FE11 1/12 JPL Progress Report Keeyoon Sung, Geoffrey C. Toon, Linda R. Brown Jet Propulsion Laboratory,
Molecular Spectroscopy Symposium June 2010 Can the Inversion-Vibration-Rotation Problem in the 4 and 2 2 States of NH 3 be solved to Experimental.
SELF- AND CO 2 -BROADENED LINE SHAPE PARAMETERS FOR THE 2 AND 3 BANDS OF HDO V. MALATHY DEVI, D. CHRIS BENNER, Department of Physics, College of William.
The Complete, Temperature Resolved Spectrum Of Methyl Formate Between 214 and 265 GHz JAMES P. MCMILLAN, SARAH M. FORTMAN, CHRISTOPHER F. NEESE, and FRANK.
D. Zhao, K.D. Doney, H. Linnartz Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, the Netherlands T he 3 μm Infrared Spectra.
Itaru KURUSU, Reona YAGI, Yasutoshi KASAHARA, Haruki ISHIKAWA Department of Chemistry, School of Science, Kitasato University ULTRAVIOLET AND INFRARED.
Infrared Spectra of N 2 -broadened 13 CH 4 at Titan Atmospheric Temperatures Mary Ann H. Smith 1, Keeyoon Sung 2, Linda R. Brown 2, Timothy J. Crawford.
Line Positions and Intensities for the ν 12 Band of 13 C 12 CH 6 V. Malathy Devi 1, D. Chris Benner 1, Keeyoon Sung 2, Timothy J. Crawford 2, Arlan W.
Ro-vibrational Line Lists for Nine Isotopologues of CO Suitable for Modeling and Interpreting Spectra at Very High Temperatures and Diverse Environments.
L. I. Mashonkina, T.A. Ryabchikova Institute of Astronomy RAS A. N. Ryabtsev Institute of Spectroscopy RAS NLTE ionization equilibrium of Nd II and Nd.
1 The r 0 Structural Parameters of Equatorial Bromocyclobutane, Conformational Stability from Temperature Dependent Infrared Spectra of Xenon Solutions,
1 70 th Symp. Mol. Spectrosc MJ14 13 CH 4 in the Octad Measurement and modeling of cold 13 CH 4 spectra from 2.1 to 2.7 µm Linda R. Brown 1, Andrei.
High Precision Mid-IR Spectroscopy of 12 C 16 O 2 : ← Band Near 4.3 µm Jow-Tsong Shy Department of Physics, National Tsing Hua University,
Lineshape analysis of CH3F-(ortho-H2)n absorption spectra in 3000 cm-1 region in solid para-H2 Yuki Miyamoto Graduate School of Natural Science and Technology,
Scott E. Dubowsky, Amber N. Rose, Nick Glumac, Benjamin J. McCall
Comb-Assisted Cavity Ring Down Spectroscopy
Andy Wong Robert J. Hargreaves Peter F. Bernath Michaël Rey
Advertisement.
NH3 measurements in the far-IR
An accurate and complete empirical line list for water vapor
A. M. Daly, B. J. Drouin, J. C. Pearson, K. Sung, L. R. Brown
Line Strength Measurements in the n2 band of H218O
Presentation transcript:

MICROWAVE SPECTRUM OF 12 C 16 O S.A. TASHKUN and S.N. MIKHAILENKO, Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, Zuev square 1, , Tomsk, RUSSIA

Motivation Calculate microwave rotational transition frequencies with confidence intervals up to J = 50 for the 0-0, 1-1, 2-2, and 3-3 bands using experimental energy levels derived from measured transition frequencies Compare them with data in COLOGNE 1, JPL 2, NIST 3, and HITRAN 4 databanks 1) H.S.P. Muller et al, J Mol Struct –227 (2005) 2) H.M. Pickett et al, JPL Catalog (2000), spec.jpl.nasa.gov 3) F.J. Lovas, 4) L.S. Rothman et al, JQSRT, 110, 553 (2009)

Experimental energy levels Measured transition frequencies and measurement uncertainties collected from the literature Ritz computer code

Derivation of energy levels Ideally: In reality: More detail in S.A. Tashkun et al JQSRT 111, 1106 (2010) c s – correction factors for some spectra (for microwave spectra c s =0) - measurement uncertainty - pressure induced shift Finally: c s, {E} are unknowns Portrait of the correlation matrix Values and uncertainties of experimental energy levels N tra = N lev = 2247 Χ = 0.71

assign RITZ(MHz) unc(KHz) COLOGNE(MHz) unc(KHz) JPL(MHz) unc(KHz) NIST(MHz) unc(KHz) Pure rotational spectrum Blue – measured frequencies; red – calculated frequencies

Pure rotational spectrum (extrapolation) assign RITZ(MHz) unc(KHz) JPL(MHz) unc(KHz) RITZ - JPL(KHz) Energy levels: E 0,49 = ± cm -1 Ntra = 6 Refs: a b c d e f E 0,48 = ± cm -1 Ntra = 10 Refs: a b c d e f g a 1.0 R. Farrenq et al, JMS 149, 375 (1991); FT/solar absorption filter 2 b R. Farrenq et al, JMS 149, 375 (1991); FT/solar absorption filter 3 c R. Farrenq et al, JMS 149, 375 (1991); FT/solar absorption filter 4 d 1.0 G. Guelachvili et al, JMS 98, 64 (1983) FT/set C e 1.0 A.W. Mantz and J.P. Maillard, JMS 53, 466 (1974); FT/emission f D.H. Rank et al, JMS 18, 418 (1965) g D.H. Rank et al, JMS 4, 518 (1960) Consider:

F.J. Lovas, NIST recommended rest frequencies for observed inter- stellar molecular microwave transitions-2002 revision. J. Phys. Chem. Ref. Data, 33, 177 (2004)

RITZ vs HITRAN-2008 Residuals Uncertainties zoom 100 microwave transitions spectral range 3.8 – cm -1 intensity range cm/molecule position uncertainty – cm -1

Conclusions Microwave transition frequencies of the 0-0,1-1,2-2, and 3-3 bands up to J=50 calculated from experimental energy levels * were presented. Each frequency is given together with 99% confidence interval. A comparison of calculated data and data from COLOGNE, JPL, NIST, and HITRAN databanks revealed a number of discrepancies which should be removed in future releases of these databanks *) S.A. Tashkun et al JQSRT 111, 1106 (2010)

Financial support We acknowledge support from a joint RFBR ( ИК_а) and CRDF (RUG TO-09) grant.