Copyright © 2010 Pearson Education, Inc. All rights reserved Sec 6.1 - 1.

Slides:



Advertisements
Similar presentations
Section 1.3 Integer Exponents.
Advertisements

Chapter R: Reference: Basic Algebraic Concepts
Copyright 2012, 2008, 2004, 2000 Pearson Education, Inc.
Section P2 Exponents and Scientific Notation
Copyright © 2010 Pearson Education, Inc. All rights reserved Sec
© 2007 by S - Squared, Inc. All Rights Reserved.
Rational Exponents, Radicals, and Complex Numbers
CHAPTER 10 Exponents and Polynomials Slide 2Copyright 2012, 2008, 2004, 2000 Pearson Education, Inc. 10.1Integers as Exponents 10.2Working with Exponents.
Copyright © 2010 Pearson Education, Inc. All rights reserved Sec Rational Exponents.
Homework Read pages 304 – 309 Page 310: 1, 6, 8, 9, 15, 28-31, 65, 66, 67, 69, 70, 71, 75, 89, 90, 92, 95, 102, 103, 127.
R.2 Integer Exponents, Scientific Notation, and Order of Operations
Copyright © 2010 Pearson Education, Inc. All rights reserved Sec
Copyright © 2011 Pearson Education, Inc. Publishing as Prentice Hall. Chapter 3 Exponents and Polynomials.
CHAPTER 4 Polynomials: Operations Slide 2Copyright 2011, 2007, 2003, 1999 Pearson Education, Inc. 4.1Integers as Exponents 4.2Exponents and Scientific.
What are the rules of integral exponents?
Integer Exponents and Scientific Notation
Copyright © Cengage Learning. All rights reserved. Polynomials 4.
Chapter 4 Copyright © 2015, 2011, 2007 Pearson Education, Inc. Chapter 4-1 Exponents and Polynomials.
Mark Dugopolski Elementary Algebra Edition 3 Chapter 4 Polynomials and Exponents Copyright © 2000 by the McGraw-Hill Companies, Inc.
Exponents and Scientific Notation Evaluate exponential forms with integer exponents. 2.Write scientific notation in standard form. 3.Write standard.
Slide 7- 1 Copyright © 2012 Pearson Education, Inc.
Section 1Chapter 5. 1 Copyright © 2012, 2008, 2004 Pearson Education, Inc. Objectives Integer Exponents and Scientific Notation Use the product.
Copyright © 2011 Pearson Education, Inc. Publishing as Prentice Hall.
Exponents and Polynomials
Copyright © 2010 Pearson Education, Inc. All rights reserved. 5.2 – Slide 1.
Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 5.6 Rules of Exponents and Scientific Notation.
Copyright © 2010 Pearson Education, Inc. All rights reserved. 5.5 – Slide 1.
Exponent Rules and Dividing Polynomials Divide exponential forms with the same base. 2.Divide numbers in scientific notation. 3. Divide monomials.
Section 6-1: properties of exponents
Chapter 8 Test Review Exponents and Exponential Functions
Copyright © 2010 Pearson Education, Inc. All rights reserved Sec
Section 1 Part 1 Chapter 5. 1 Copyright © 2012, 2008, 2004 Pearson Education, Inc. Objectives Integer Exponents – Part 1 Use the product rule.
Copyright © 2011 Pearson Education, Inc. Publishing as Prentice Hall. Chapter 12 Exponents and Polynomials.
Copyright © 2011 Pearson Education, Inc. Integral Exponents and Scientific Notation Section P.2 Prerequisites.
© 2010 Pearson Prentice Hall. All rights reserved. CHAPTER 5 Number Theory and the Real Number System.
Rational Exponents Evaluate rational exponents. 2.Write radicals as expressions raised to rational exponents. 3.Simplify expressions with rational.
Copyright © 2012, 2009, 2005, 2002 Pearson Education, Inc. Section 5.2 Negative Exponents and Scientific Notation.
Chapter 5 Section 3. Objectives 1 Copyright © 2012, 2008, 2004 Pearson Education, Inc. An Application of Exponents: Scientific Notation Express numbers.
Chapter 4 Exponential and Logarithmic Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Properties of Logarithms.
Copyright © 2010 Pearson Education, Inc. All rights reserved Sec
Copyright © 2011 Pearson Education, Inc. Rational Exponents and Radicals Section P.3 Prerequisites.
Copyright © 2014, 2010, and 2006 Pearson Education, Inc. Chapter 4 Polynomials.
Copyright © 2010 Pearson Education, Inc. All rights reserved Sec
Objective: 6.1 Using Properties of Exponents 1 What Is Chapter 6 All About? Short Answer: Polynomials and Polynomials Functions Poly? Nomial? Like chapter.
Copyright © 2010 Pearson Education, Inc. All rights reserved Sec Integer Exponents and Scientific Notation.
Copyright © 2007 Pearson Education, Inc. Slide R-1.
Chapter 4 Exponential and Logarithmic Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Properties of Logarithms.
1 Copyright © 2015, 2011, 2007 Pearson Education, Inc. Chapter 1-1 Basic Concepts Chapter 1.
Copyright © 2014, 2010, and 2006 Pearson Education, Inc. Chapter 1 Introduction to Algebraic Expressions.
Copyright 2013, 2009, 2005, 2002 Pearson, Education, Inc.
Copyright © 2014, 2010, and 2006 Pearson Education, Inc. Chapter 4 Polynomials.
4.3 Scientific Notation. Objectives 1.Convert a number from standard notation to scientific notation. 2.Convert a number from scientific notation to standard.
Copyright © 2010 Pearson Education, Inc. All rights reserved Sec Complex Fractions.
Copyright 2013, 2009, 2005, 2002 Pearson, Education, Inc.
Change to scientific notation: A. B. C. 289,800, x x x
Slide Copyright © 2012 Pearson Education, Inc.
Chapter P Prerequisites: Fundamental Concepts of Algebra Copyright © 2014, 2010, 2007 Pearson Education, Inc. 1 P.2 Exponents and Scientific Notation.
CHAPTER 12 Polynomials: Operations Slide 2Copyright 2012, 2008, 2004, 2000 Pearson Education, Inc. 12.1Integers as Exponents 12.2Exponents and Scientific.
1-5 Properties of Exponents Holt Algebra 2. Warm Up Simplify  4   ,000 30,000.
CHAPTER 12 Polynomials: Operations Slide 2Copyright 2012, 2008, 2004, 2000 Pearson Education, Inc. 12.1Integers as Exponents 12.2Exponents and Scientific.
CHAPTER R: Basic Concepts of Algebra
7.5 Properties of Exponents and Scientific Notation
5.1 Integer Exponents and Scientific Notation.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
7.5 Properties of Exponents and Scientific Notation
Exponents, Polynomials, and Polynomial Functions
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
4.6 Exponents, Order of Operations, and Complex Fractions
Chapter 1 Introduction to Algebra: Integers
Presentation transcript:

Copyright © 2010 Pearson Education, Inc. All rights reserved Sec

Copyright © 2010 Pearson Education, Inc. All rights reserved Sec Exponents, Polynomials, and Polynomial Functions Chapter 6

Copyright © 2010 Pearson Education, Inc. All rights reserved Sec Integer Exponents and Scientific Notation

Copyright © 2010 Pearson Education, Inc. All rights reserved. Sec Integer Exponents and Scientific Notation Objectives 1. Use the product rule for exponents. 2. Define 0 and negative exponents. 3. Use the quotient rule for exponents. 4. Use the power rule for exponents. 5. Simplify exponential expressions. 6. Use the rules for exponents with scientific notation.

Copyright © 2010 Pearson Education, Inc. All rights reserved. Sec Integer Exponents and Scientific Notation Use the product rule for exponents. The products of exponential expressions with the same base are found by adding exponents.

Copyright © 2010 Pearson Education, Inc. All rights reserved. Sec Integer Exponents and Scientific Notation Use the product rule for exponents.

Copyright © 2010 Pearson Education, Inc. All rights reserved. Sec Integer Exponents and Scientific Notation Define 0 and negative exponents.

Copyright © 2010 Pearson Education, Inc. All rights reserved. Sec Integer Exponents and Scientific Notation Negative Exponents

Copyright © 2010 Pearson Education, Inc. All rights reserved. Sec Integer Exponents and Scientific Notation Special Rules for Negative Exponents

Copyright © 2010 Pearson Education, Inc. All rights reserved. Sec Integer Exponents and Scientific Notation Use the quotient rule for exponents.

Copyright © 2010 Pearson Education, Inc. All rights reserved. Sec Integer Exponents and Scientific Notation Use the power rule for exponents.

Copyright © 2010 Pearson Education, Inc. All rights reserved. Sec Integer Exponents and Scientific Notation Use the power rule for exponents.

Copyright © 2010 Pearson Education, Inc. All rights reserved. Sec Integer Exponents and Scientific Notation More Special Rules for Negative Exponents

Copyright © 2010 Pearson Education, Inc. All rights reserved. Sec Integer Exponents and Scientific Notation Rules for Exponents Summarized

Copyright © 2010 Pearson Education, Inc. All rights reserved. Sec Integer Exponents and Scientific Notation Using the Definitions and Rules for Exponents Note: There is often more than one way to simplify expressions as illustrated in the following expressions.

Copyright © 2010 Pearson Education, Inc. All rights reserved. Sec Integer Exponents and Scientific Notation Scientific Notation Scientists often deal with extremely large and extremely small numbers. For example: X-ray The distance from the sun to the Earth is approximately 150,000,000 kilometers. The wavelength of x-rays is meter.

Copyright © 2010 Pearson Education, Inc. All rights reserved. Sec Integer Exponents and Scientific Notation Scientific Notation It is often simpler to write these very large or very small numbers using scientific notation.

Copyright © 2010 Pearson Education, Inc. All rights reserved. Sec Integer Exponents and Scientific Notation Converting to Scientific Notation To write numbers in scientific notation, we use the following steps. If the number is negative, use the steps above and then label your results as a negative number.

Copyright © 2010 Pearson Education, Inc. All rights reserved. Sec Integer Exponents and Scientific Notation Converting to Scientific Notation

Copyright © 2010 Pearson Education, Inc. All rights reserved. Sec Integer Exponents and Scientific Notation Converting to Scientific Notation

Copyright © 2010 Pearson Education, Inc. All rights reserved. Sec Integer Exponents and Scientific Notation Converting from Scientific Notation to Standard Notation

Copyright © 2010 Pearson Education, Inc. All rights reserved. Sec Integer Exponents and Scientific Notation Using Scientific Notation in Computation