MICE at STFC-RAL The International Muon Ionization Cooling Experiment -- Design, engineer and build a section of cooling channel capable of giving the.

Slides:



Advertisements
Similar presentations
Progress in the construction of the MICE cooling channel and first measurements Adam Dobbs, EPS-HEP, 23 rd July 2011.
Advertisements

PID Detector Size & Acceptance Chris Rogers Analysis PC
FIGURE OF MERIT FOR MUON IONIZATION COOLING Ulisse Bravar University of Oxford 28 July 2004.
ISIS Related Issues for MICE Adam Dobbs Proton Accelerator Development Meeting, RAL 24 th March /03/20111A. Dobbs.
MICE the Muon Ionization Cooling Experiment Emilio Radicioni, INFN EPS-HEP Aachen 2003.
International Muon Ionization Cooling Experiment Edward McKigney Imperial College RAL March 25, 2002 Physics Motivation and Cooling Introduction.
Changing the absorbers: how does it fit in the MICE experimental programme? Besides the requirement that the amount of multiple scattering material be.
CHIPP Sept 2005Jean-Sébastien GraulichSlide 1 What is MICE  Muon Ionisation Cooling Experiment  What is Ionisation Cooling ? Cooling = Reduction of Beam.
Printed by MICE is a Muon Ionization Cooling Experiment running at the Rutherford-Appleton Laboratory, Chilton UK. Cooled muon beams.
Alain Blondel MICE: Constraints on the solenoids 2.Field Homogeneity: or ? this will be dictated by the detector requirements. TPG will be.
PID Detector Size & Acceptance Chris Rogers Analysis PC
MICE: The International Muon Ionization Cooling Experiment Diagnostic Systems Tracker Cherenkov Detector Time of Flight Counters Calorimeter Terry Hart.
WIN'05, June A. Klier - Muon Collider Physics1 Physics at a Future Muon Collider Amit Klier University of California, Riverside WIN’05 – Delphi,
MANX meeting 15 July 2008 Alain Blondel 1   MICE The International Muon Ionization Cooling Experiment MICE in 2011.
Overview of Experiment and Parameter Choices presented by Giles Barr.
MICE at STFC-RAL The International Muon Ionization Cooling Experiment -- Design, engineer and build a section of cooling channel capable of giving the.
INExT – Henry Nebrensky – 24 September 2010 slide 1 Goals and Status of MICE the international Muon Ionization Cooling Experiment Henry Nebrensky (Brunel.
Emittance measurement: ID muons with time-of-flight Measure x,y and t at TOF0, TOF1 Use momentum-dependent transfer matrices iteratively to determine trace.
Fast TOF for Muon Cooling Experiments Robert Abrams Muons, inc.
Physics Program and Runs: Autumn 2011 & Step IV V. Blackmore MICE Project Board, 08/03/12.
CM37 Alain Blondel step IV physics success 1 « STEP IV operations : Physics »
Emittance measurement: ID muons with time-of-flight Measure x,y and t at TOF0, TOF1 Use momentum-dependent transfer matrices to map  path Assume straight.
Muons within Acceleration Acceptance Cuts at End of Transverse Cooling Channel TOWARDS A GLOBAL OPTIMIZATION OF THE MUON ACCELERATOR FRONT END H. K. Sayed,
Muons, Inc. AAC Feb M. A. C. Cummings 1 Uses of the HCC Mary Anne Cummings February 4, 2009 Fermilab AAC.
Goals and Status of MICE The International Muon Ionization Cooling Experiment J.S. Graulich.
Source Group Bethan Dorman Paul Morris Laura Carroll Anthony Green Miriam Dowle Christopher Beach Sazlin Abdul Ghani Nicholas Torr.
Status of the Muon Ionization Cooling Experiment (MICE) Yagmur Torun Illinois Institute of Technology April 1, 2013.
Particle Production in the MICE Beam Line Particle Accelerator Conference, May 2009, Vancouver, Canada Particle Production in the MICE Beam Line Jean-Sebastien.
2002/7/02 College, London Muon Phase Rotation at PRISM FFAG Akira SATO Osaka University.
2002/7/04 College, London Beam Dynamics Studies of FFAG Akira SATO Osaka University.
Results from Step I of MICE D Adey 2013 International Workshop on Neutrino Factories, Super-beams and Beta- beams Working Group 3 – Accelerator Topics.
MICE Step 1: First Emittance Results with Particle Physics Detectors Linda R. Coney EuCARD Meeting – 10 May 2011.
ICHEP 2012 Melbourne, 7 July 2012 Paul Soler on behalf of the MICE Collaboration The MICE Beam Line Instrumentation (Trackers and PID) for precise Emittance.
Quantitative Optimisation Studies of the Muon Front-End for a Neutrino Factory S. J. Brooks, RAL, Chilton, Oxfordshire, U.K. Tracking Code Non-linearised.
1 EPIC SIMULATIONS V.S. Morozov, Y.S. Derbenev Thomas Jefferson National Accelerator Facility A. Afanasev Hampton University R.P. Johnson Muons, Inc. Operated.
-Factory Front End Phase Rotation Gas-filled rf David Neuffer Fermilab Muons, Inc.
Harold G. Kirk Brookhaven National Laboratory Progress in Quad Ring Coolers Ring Cooler Workshop UCLA March 7-8, 2002.
MICE RF Workshop Alain Blondel MICE = critical R&D for neutrino factory and muon collider 1 neutrino factory: accelerate muons and store to produce.
MICE CC visit at CERN Alain Blondel 1   MICE The International Muon Ionization Cooling Experiment.
NEUTRINO DETECTORS Cutting-Edge Accelerator Research for a Neutrino Factory and Other Applications Ajit Kurup for the FETS and UKNF Collaborations Cutting-Edge.
MICE: The International Muon Ionisation Cooling Experiment MOPLT106 Abstract The provision of intense stored muon beams would allow the properties of neutrinos.
MICE FAC open session Alain Blondel 1   MICE The International Muon Ionization Cooling Experiment.
IDS-NF Accelerator Baseline The Neutrino Factory [1, 2] based on the muon storage ring will be a precision tool to study the neutrino oscillations.It may.
Timing measurements at the MICE experiment – 1 The analysis of timing measurements at the Muon Ionization Cooling Experiment Mark Rayner The University.
Progress in the construction of the MICE cooling channel and first measurements Adam Dobbs, EPS-HEP, 23 rd July 2011.
- MICE - The Muon Ionization Cooling Experiment Jean-Sebastien Graulich, Univ. Genève o Introduction: Aims And Concept o Design o Infrastructure: Hall,
Muon Ionization Cooling Experiment Update 1Alan Bross AEM October 14, 2013.
MICE RF review Alain Blondel 1   MICE The International Muon Ionization Cooling Experiment.
MICE CM20 Alain Blondel 10 February The International Muon Ionization Cooling Experiment MICE CM20 Spokesmouse remarks.
Simulating the RFOFO Ring with Geant Amit Klier University of California, Riverside Muon Collaboration Meeting Riverside, January 2004.
1 Muon Capture for a Muon Collider David Neuffer July 2009.
ICHEP Conference Amsterdam 31st International Conference on High Energy Physics 24  31 July 2002 Gail G. Hanson University of California, Riverside For.
Monte Carlo simulation of the particle identification (PID) system of the Muon Ionization Cooling Experiment (MICE) Mice is mainly an accelerator physics.
Katsuya Yonehara Accelerator Physics Center, Fermilab On behalf of the Muon Accelerator Program 5/22/121International Particle Accelerator Conference,
(one of the) Request from MPB
MICE S TEP IV P HYSICS ‘D ELIVERABLES ’ V. Blackmore MAP 2014 Spring Meeting 30 th May, /15 AKA “What will we learn from Step IV?”
S TATUS OF THE P HYSICS A NALYSIS V. Blackmore MICE Project Board 29 th April, /30.
Muons, Inc. Feb Yonehara-AAC AAC Meeting Design of the MANX experiment Katsuya Yonehara Fermilab APC February 4, 2009.
R&D towards a Multi-TeV Muon Collider Steve Geer 1.Introduction 2.Muon Collider Ingredients 3.Muon Collider / Neutrino Factory R&D 4.Muon Collider Specific.
K. Long, 28 June, 2016 Introduction to MICE — and the role of the Hydrogen Delivery System.
MICE. Outline Experimental methods and goals Beam line Diagnostics – In HEP parlance – the detectors Magnet system 2MICE Optics Review January 14, 2016.
MICE at STFC-RAL The International Muon Ionization Cooling Experiment -- Design, engineer and build a section of cooling channel capable of giving the.
Research and development toward a future Muon Collider Katsuya Yonehara Accelerator Physics Center, Fermilab On behalf of Muon Accelerator Program Draft.
Uses of the HCC Mary Anne Cummings February 4, 2009 Fermilab AAC
MICE The International Muon Ionisation Cooling Experiment
M. Migliorati, C. Vaccarezza INFN - LNF
The Muon Ionization Cooling Experiment: Controls and Monitoring
Design of the MANX experiment
The Detector System of the MICE Experiment
Uses of the HCC Mary Anne Cummings February 4, 2009 Fermilab AAC
Presentation transcript:

MICE at STFC-RAL The International Muon Ionization Cooling Experiment -- Design, engineer and build a section of cooling channel capable of giving the desired performance for a Neutrino Factory; -- Place it in a muon beam and measure its performance in various modes of operation and beam conditions, thereby investigating the limits and practicality of cooling.

Neutrino Factory MICE is one of the critical R&D experiments towards neutrino factories and muon colliders MICE MANY CHALLENGES! MUON COOLING  HIGH INTENSITY NEUTRINO FACTORY HIGH LUMINOSITY MUON COLLIDER With the growing importance of neutrino physics + the possibility of a light Higgs ( GeV) physics could be turning this way very fast! Cooling and more generally the initial chain capture, buncher, phase rotation and cooling rely on complex beam dynamics and technology, such as High gradient (~>12 MV/m) RF cavities embedded in strong (>2T) solenoidal magnetic field

Similar to radiation damping in an electron storage ring: muon momentum is reduced in all directions by going through liquid hydrogen absorbers, and restored longitudinally by acceleration in RF cavities. Thus transverse emittance is reduced progressively. Because of a) the production of muons by pion decay and b) the short muon lifetime, ionization cooling is only practical solution to produce high brilliance muon beams Emittance exchange involves ionization varying in space which cancels the dispersion of energies in the beam. This can be used to reduce the energy spread and is of particular interest for  +  -  H (125) since the Higgs is very narrow (~5MeV) COOLING -- Principle is straightforward… Transverse: Longitudinal: Practical realization is not! MICE cooling channel (4D cooling) 6D candidate cooling lattices

4 MICE the Muon Ionization Cooling Experiment Particle by particle measurement, then accumulate few 10 5 muons   [ (  in -  out )/  in ] = Measure input particle x,x’,y,y’, t, t’=E/Pz  input emittance  in Measure output particle x,x’,y,y’, t, t’=E/Pz  output emittance  out COOLING CHANNEL

5 Incoming muon beam Variable Diffuser Beam PID TOF 0, TOF 1 Cherenkovs Trackers 1 & 2 Liquid Hydrogen absorbers 1,2,3 Downstream particle ID: TOF 2, KL EMR RF cavitiesRF power Spectrometer solenoid 1 Spectrometer solenoid 2 Coupling Coils 1&2 Focus coils MICE Collaboration across the planet MICE is now completely engineered !

6 STEP VI MICE STEPS Both for funding and science reasons MICE is executed in Steps …. Originally we had 6 Steps We will probably only have 3 steps step I, step IV, step VI COMPLETED 2013 Aim: 2016

Completed and published! Main results: -- It all works! -- TOF resolution s: 50 ps and 1cm -- ~100 muons per second Data MC y (mm) vs x (mm) x (mrad) vs x (mm)y (mrad) vs y (mm) -- and first measts of emittance with the TOFs Beam commissionning

8 Make this a photograph by the end of 2012! LH2 system diffuser FOCUS COIL EMR Tracker 2 STEP IV Tracker 1 Spectrometer Solenoid 2 Spectrometer Solenoid 1

No absorber Alignment Optics studies Liq H 2 absorber (full/empty) Solid absorber(s) LiH Plastic C, Al, Cu LiH Wedge absorber Emittance exchange Multiple scattering Energy loss  Cooling STEP IV EXPERIMENTS (2013)

10 STEP VI Aim: 2016 STEP VI Coupling coil (Harbin China) 10 RF cavities (Berkeley) absorber windows (Mississippi) Liq H2 absorber (KEK) AFC Magnet (RAL/Oxford) RF Amplifier (Daresbury) RF Couplers (Berkeley) Berylium Windows (Berkeley) MICE construction: world-wide team effort! Aim: MICE step VI in 2016