Thunderstorm nowcasting, short-range forecasting, and warning for aviation by Dennis Stich, C. Forster, A. Tafferner, M. Köhler, I. Sölch, and T. Gerz.

Slides:



Advertisements
Similar presentations
Quantitative evaluation of regional precipitation forecasts using multi-dimensional remote sensing observations (QUEST) Nicole van Lipzig a, Susanne Crewell.
Advertisements

Institut für Physik der Atmosphäre Precipitation observation networks Martin Hagen DLR Oberpfaffenhofen.
Institut für Physik der Atmosphäre Identification of Convective Hotspots in Mountainous Terrain Martin Hagen, Leslie Grebe, Joël van Baelen, Evelyne Richard.
Institut für Physik der Atmosphäre POLDIRAD and LINET observations during COPS Martin Hagen and Hartmut Höller DLR Oberpfaffenhofen.
Weather Forecasting This chapter discusses: 1.Various weather forecasting methods, their tools, and forecasting accuracy and skill 2.Images for the forecasting.
The use of Doppler radar products for nowcasting tornadoes DWD workshop on tornado forecasting, February 24th 2005, Langen 1. introduction 2. products.
European Storm Forecast Experiment A close look at a severe MCS during the Kyrill winter storm over Central Europe Christoph Gatzen, Pieter Groenemeijer,
JMA Takayuki MATSUMURA (Forecast Department, JMA) C Asia Air Survey co., ltd New Forecast Technologies for Disaster Prevention and Mitigation 1.
1 Ground Based Meteorological Radars Presented By: David Franc NOAAs National Weather Service September 2005.
ECMWF Slide 1Met Op training course – Reading, March 2004 Forecast verification: probabilistic aspects Anna Ghelli, ECMWF.
The University of Reading Helen Dacre AMS 2010 Air Quality Forecasting using a Numerical Weather Prediction Model ETEX Surface Measurement Sites.
DYMECS: Dynamical and Microphysical Evolution of Convective Storms (NERC Standard Grant) University of Reading: Robin Hogan, Bob Plant, Thorwald Stein,
Experiences concerning fuzzy-verification and pattern recognition methods Ulrich Damrath.
Institut für Physik der Atmosphäre Institut für Physik der Atmosphäre Climate-Chemistry Interactions - User Requirements Martin Dameris DLR-Institut für.
Institut für Physik der Atmosphäre 1 Evaluation of a numerical thunderstorm study with POLDIRAD and lightning observations Oberpaffenhofen, 8 February.
Institut für Physik der Atmosphäre Christian Keil Institut für Physik der Atmosphäre DLR Oberpfaffenhofen Germany Forecast Quality Control Applying an.
Production of a multi-model, convective- scale superensemble over western Europe as part of the SESAR project PHY-EPS Workshop, June 19 th, 2013 Jeffrey.
1 00/XXXX © Crown copyright Carol Roadnight, Peter Clark Met Office, JCMM Halliwell Representing convection in convective scale NWP models : An idealised.
Chapter 13 – Weather Analysis and Forecasting
The MSC Forecasters Forums and the Future Role of the Human Forecaster David Sills Cloud Physics and Severe Weather Research Section, Environment Canada,
WIND INSIGHT a wind power forecasting tool for power system security management Dr Nicholas Cutler 21 March 2013
Jet Stream Compression Turbulence Mountain wave Icing IFR ceiling and visibility CWSU Products MIS CWA PIREPS Questions and Comments Created 9/14/2008.
Future Radar and Satellite Technology Daniel C. Miller National Weather Service Columbia, SC.
Scheduled Meteorological Product Creation using NinJo Batch 1.3 Sören Kalesse Deutscher Wetterdienst
© 2012 National Heart Foundation of Australia. Slide 2.
Lightning data assimilation techniques for convective storm forecasting with application to GOES-R Geostationary Lightning Mapper Alexandre Fierro, Blake.
Institut für Physik der Atmosphäre Institut für Physik der Atmosphäre Object-Oriented Best Member Selection in a Regional Ensemble Forecasting System Christian.
Deutscher Wetterdienst Zentrale Vorhersage DWD Workshop "Use and Verification of LEPS products", Geneve, May, Verification of LEPS products.
Introduction to data assimilation in meteorology Pierre Brousseau, Ludovic Auger ATMO 08,Alghero, september 2008.
Version 1.0, 30 June 2004 APPLICATIONS OF METEOSAT SECOND GENERATION (MSG) RGB IMAGES: PART 05 RGB COMPOSITES WITH CHANNEL 12 AND THEIR INTERPRETATION.
Stationary orographic cloud bands: Dynamic and sportive interests link satellite observations with mesoscale modeling Hans Volkert DLR, Institut für Physik.
Slide: 1 Version 0.3, 20 January 2004 METEOSAT SECOND GENERATION (MSG) METEOROLOGICAL USE OF THE SEVIRI HIGH-RESOLUTION VISIBLE (HRV) CHANNEL Contact:Jochen.
Institut für Physik der Atmosphäre Institut für Physik der Atmosphäre Modelisation a meso-echelle au IPA-DLR : Des eclairs au trafic aérien Mesoscale Modeling.
NWCSAF 2014 Users’ Survey NWC SAF 2015 Users Workshop February 2015 Ana Sánchez Piqué
© CNMCA Cap. Davide MELFI Italian Air Force Meteorological Service CNMCA An Italian tool for convection: NEFODINA Session 4 of Convection Week 2011, 6-9.
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Institut für Physik der Atmosphäre On the Value of.
Synthetic satellite images based on COSMO Caroline Forster, Tobias Zinner with contributions from Christian Keil, Luca Bugliaro, Françoise Faure.
Institut für Physik der Atmosphäre Predictability of precipitation determined by convection-permitting ensemble modeling Christian Keil and George C.Craig.
RECENT PROGRESS IN CONVECTIVE PHENOMENA MONITORING AND FORECASTING AT THE INM F. Martín, F. Elizaga, I. San Ambrosio and J. M. Fernández Servicio de Técnicas.
Chapter 13 – Weather Analysis and Forecasting. The National Weather Service The National Weather Service (NWS) is responsible for forecasts several times.
© Crown copyright Met Office Improving forecasting of disruption due to convection within UK airspace Paul Maisey and Katie Brown ECAM, European Meteorological.
Folie 1 Mature Convection: DLR activities presented by Caroline Forster DLR - Institute of Atmospheric Physics, Oberpfaffenhofen, Germany Convection Working.
Towards an object-oriented assessment of high resolution precipitation forecasts Janice L. Bytheway CIRA Council and Fellows Meeting May 6, 2015.
GOES-R Risk Reduction New Initiative: Storm Severity Index Wayne M. MacKenzie John R. Mecikalski John R. Walker University of Alabama in Huntsville.
New statistical approach for hail storm nowcasting: case study of severe thunderstorm developed on 28 June 2007 over northeast Bulgaria Boryana Markova.
The NWS/NCAR “Forecaster Over the Loop” Fort Worth Operational Demonstration Human Enhancement of a Thunderstorm Nowcasting System Eric Nelson, Rita Roberts,
A. FY12-13 GIMPAP Project Proposal Title Page version 27 October 2011 Title: Probabilistic Nearcasting of Severe Convection Status: New Duration: 2 years.
Blended Course on the Principles of Satellite Meteorology 21 st April – 15 th July 2009 Classroom June 2009 Final Presentation – Convection – 09May2009.
NCAR Auto-Nowcaster Convective Weather Group NCAR/RAL.
RDT – Rapidly Developing Thunderstorms Satellite Application Facilities (SAFs) are dedicated centres for processing satellite data, achieved by utilizing.
Titelfoto auf dem Titelmaster einfügen Deutscher Wetterdienst Dr. Paul James, German Weather Service, ECAM/EMS Conference, Reading, 9. Sept NowCastMIX.
The Rapid Developing Thunderstorm (RDT) product CDOP to CDOP2
Cb-LIKE: thunderstorm forecasts up to 6 hrs with fuzzy logic
NOAA-MDL Seminar 7 May 2008 Bob Rabin NOAA/National Severe Storms Lab Norman. OK CIMSS University of Wisconsin-Madison Challenges in Remote Sensing to.
Satellite based instability indices for very short range forecasting of convection Estelle de Coning South African Weather Service Contributions from Marianne.
Purpose To deepen your knowledge to use satellite images for practical nowcasting during situations of summer convection  Model monitoring  Interpretation.
GII to RII to CII in South Africa Estelle de Coning South African Weather Service Senior Scientist.
Recent and Planned Updates to the NCAR Auto-Nowcast (ANC) System Thomas Saxen, Rita Roberts, Huaqing Cai, Eric Nelson, Dan Breed National Center for Atmospheric.
Deutsches Zentrum für Luft- und Raumfahrt e.V. Institut für Physik der Atmosphäre Case Study: 1 st July 2010, 12:00 UTC.
COMPARISONS OF NOWCASTING TECHNIQUES FOR OCEANIC CONVECTION Huaqing Cai, Cathy Kessinger, Nancy Rehak, Daniel Megenhardt and Matthias Steiner National.
Center for Satellite Applications and Research (STAR) Review 09 – 11 March 2010 Combining GOES Observations with Other Data to Improve Severe Weather Forecasts.
SIGMA: Diagnosis and Nowcasting of In-flight Icing – Improving Aircrew Awareness Through FLYSAFE Christine Le Bot Agathe Drouin Christian Pagé.
Case Study: March 1, 2007 The WxIDS approach to predicting areas of high probability for severe weather incorporates various meteorological variables (e.g.
ASAP Convective Weather Research at NCAR Matthias Steiner and Huaqing Cai Rita Roberts, John Williams, David Ahijevych, Sue Dettling and David Johnson.
NCAR Research on Thunderstorm Analysis & Nowcasting
Center for Analysis and Prediction of Storms (CAPS) Briefing by Ming Xue, Director CAPS is one of the 1st NSF Science and Technology Centers established.
ASAP Convective Weather Analysis & Nowcasting
Visible Satellite, Radar Precipitation, and Cloud-to-Ground Lightning
Nowcast guidance of afternoon convection initiation for Taiwan
O.Kryvobok, V.Balabuh Ukrainian Hydrometeorological Institute
Presentation transcript:

Thunderstorm nowcasting, short-range forecasting, and warning for aviation by Dennis Stich, C. Forster, A. Tafferner, M. Köhler, I. Sölch, and T. Gerz 13th EMS Annual Meeting & 11th ECAM Reading, United Kingdom, 9 - 13 September 2013

Thunderstorms as weatherobjects with multiple object attributes > EMS & ECAM 2013 > Dennis Stich > September 2013 Thunderstorms as weatherobjects with multiple object attributes Cb top: conv. turbulence, lightning activity, etc. detected by satellite (Cb-TRAM) Cb bottom: hail, icing, lightning, heavy rain, turbulence, etc. detected by radar (Rad-TRAM) Picture by Martin Köhler, DLR Vortrag > Autor > Dokumentname > Datum

Combination of data sources through fuzzy logic: > EMS & ECAM 2013 > Dennis Stich > September 2013 Weather Forecast User-oriented System Including Object Nowcasting Surface Analysis POLDIRAD Lightning Radar tracker Cloud tracker Combination of data sources through fuzzy logic: Decision finding technique allowing for parameter ranges instead of fixed thresholds Takes into account the meteorological experience and concepts as well as local effects weather object specification oriented at user requirements Initiation Track Nowcast Forecast forecast validation forecast validation Object Comparison Object Comparison SYNSAT COSMO-DE & Ensemble Local forecasting SYNRAD

Cb-TRAM - Cumulonimbus TRacking And Monitoring > EMS & ECAM 2013 > Dennis Stich > September 2013 Cb-TRAM - Cumulonimbus TRacking And Monitoring Used MSG (rapidscan) data: WV 6.2 IR 10.8 IR 12.0 HRV Detection stages: 1: Convection Initiation (CI) development in HRV IR 10.8 cooling 2: Rapid development WV 6.2 rapid cooling (> 1K/15min) 3: Mature storms T 6.2 - T 10.8 HRV texture Lightning (LINET) Extrapolation up to 60 min (here 30 minute nowcast plotted) Description: Zinner et al., 2008,09 & 13 Detection stages: 1: Convection Initiation (CI) development in HRV IR 10.8 cooling 2: Rapid development WV 6.2 rapid cooling (> 1K/15min) 3: Mature storms T 6.2 - T 10.8 HRV texture Extrapolation up to 60 min (here 30 minute nowcast plotted) Description: Zinner et al., 2008,09 & 13

CI postprocessing with additional data > EMS & ECAM 2013 > Dennis Stich > September 2013 CI postprocessing with additional data LINET data & ingredients describing moisture, instability, and lift: equivalent potential temperature θe KO-Index vertical motion ω in 500 hPA Generation of a CI forcing value for each CI detection with fuzzy logic CI forcing values can be translated into a statistical probability of further development Lowest probabilities can be filtered The probability of further development is an additional information which can be treated as a kind of confidence level assigned to the CI detection

Cb-TRAM: area of application > EMS & ECAM 2013 > Dennis Stich > September 2013 Cb-TRAM: area of application

Rad-TRAM - Radar Tracking and Monitoring > EMS & ECAM 2013 > Dennis Stich > September 2013 Rad-TRAM - Radar Tracking and Monitoring Based on DWD radar data: RX and EURADCOM Black contours: areas > 37 dBZ Dotted contours: 60 min nowcast Tracking and nowcasting based on pyramidal matching like in Cb-TRAM Available every 5th minute

Rad-TRAM EURADCOM for TMA MUC Rad-TRAM RX for Germany > EMS & ECAM 2013 > Dennis Stich > September 2013 Rad-TRAM: area of application Rad-TRAM EURADCOM for FABEC (Functional Airspace Block European Central) Rad-TRAM EURADCOM for TMA MUC Rad-TRAM RX for Germany

Automated thunderstorm warnings (AutoAlert) > EMS & ECAM 2013 > Dennis Stich > September 2013 Automated thunderstorm warnings (AutoAlert) Aims: Raise situational awareness Presentation of the same information to describe the current situation to all stakeholders at an airport to support CDM Automated generation of text with attachment of the current Rad-TRAM-image for the TMA – 24/7 availability ~ 120 users at Airport MUC at DFS, FMG, Lufthansa, DWD, TUIfly, AirBerlin, All Nippon Airways… Applicable not only at MUC, but for each airport where Rad-TRAM and lightning measurement data are available

> EMS & ECAM 2013 > Dennis Stich > September 2013 AutoAlert example with additional information interactively edited (in red) DLR Oberpfaffenhofen, 20 June 2012, Gewitterwarnhinweis um 14:40 UTC *********************************************************   Es wurden Gewittertops bis ca. 14 km Höhe und länger anhaltender Hagel beobachtet. Gewitterzelle Nr. 281 etwa 31 km von MUC entfernt wird laut Prognose in 50 Min. den Flughafen MUC treffen. Weitere Gewitterzellen weniger als 100 km von MUC entfernt. Betroffene Bereiche: NW, SW, SE Mittlere Zugrichtung aller Zellen: nord-oestlich Zur Erläuterung: Gewitterzellen sind schwarz umrandet (Bereich mit Starkniederschlag). Die Verlagerung nach 60 Minuten ist mit einem Pfeil und einer schwarz-weiß gestrichelten Linie markiert. Blitze (LINET) sind mit blauen Kreuzen markiert. Weitere Informationen: Siehe Anhang, MetFROG und http://www.pa.op.dlr.de/nowcasting/ (User: nowcasting, Passwd: drizzle) Mit freundlichen Grüßen, das Gewitterteam des DLR Instituts für Physik der Atmosphäre Feedback, Fragen und Anregungen bitte an cb-team@dlr.de Tel.: 08153 28 3174 oder 01853 28 1218

Cb indicator forecasts up to 6 hrs (Cblike) > EMS & ECAM 2013 > Dennis Stich > September 2013 Cb indicator forecasts up to 6 hrs (Cblike) Fuzzy logic combination of CAPE, 500 hPa vertical velocity, synthetic satellite and radar data from the DWD COSMO-DE model Cblike 6 hrs forecast for 21 June 2012 18:00 UTC Cb observation 21 June 2012 18:00 UTC White contours: Cblike indicator exceeding a certain threshold Pink contours: Rad-TRAM cells Blue crosses: Lightning data (LINET)

Short-range limited area NWP (COSMO-MUC) > EMS & ECAM 2013 > Dennis Stich > September 2013 Short-range limited area NWP (COSMO-MUC) For seemless prediction of airtraffic relevant phenomena Nowcasting COSMO-MUC COSMO-DE Forecast skill Nowcast NWP Theory (60 min) (30 min - 4h) (3h +) Forecast lead time

Experience in the framework of Wetter & Fliegen > EMS & ECAM 2013 > Dennis Stich > September 2013 Experience in the framework of Wetter & Fliegen MUC COSMO-EU COSMO-MUC Height [m] ~360 km P2P Glide path Glide path positions (GPP)

Thank you for your attention! > EMS & ECAM 2013 > Dennis Stich > September 2013 Thank you for your attention! contact: dennis.stich@dlr.de 25% 50% 75% Best possible Cb description through 3D-polarimetric radar, lightning, satellite, LLWAS; Fuzzy logic: convective initiation, intensity, life cycle Output: Cb object 3D with attributes. Extrapolation including trend in 3 dimensions by fuzzy logic Combination. Extrapolation 2-D only, no vertical extent, no trend, indication of severity. Output:Cb object 2 D with attributes Calculation of probability of occurrence of Cb with certain intensity by fuzzy logic combination of extrapolation and model forecast Decrease of information detail over forecast time (Tafferner et al., 2012)