Parul Institute of Engineering & Technology Subject Code : 151903 Name Of Subject : Fluid Power Engineering Name of Unit : Pumps Topic : Reciprocating.

Slides:



Advertisements
Similar presentations
A force applied over a surface is pressure.
Advertisements

References Which were useful? Sources Fluid Power with Applications; Anthony Esposito Basics of Hydraulic Systems Qin Zhang Hydraulic and Pneumatics.
Pumps CM4120 D. Caspary February, 2004.
CHE Pumps and gas moving equipment  For the fluid flow from point to another, a driving force is needed.  The driving force may be supplied by.
Pumps, Compressors, Fans, Ejectors and Expanders
PUMPS AND GAS-MOVING EQUIPMENT
Basics of Pump Vigyan Ashram, Pabal.
Advanced Pump Fundamentals Agenda
CE 3372 Water Systems Design
Water Pumps turbo-hydraulic pumps, positive-displacement pumps.
TURBINES.
PUMPS, VALVES, & FANS …Moving fluids Objectives Comprehend the basic construction and application of valves used Comprehend the basic construction and.
Pumping Plants. Types of Pumps Positive displacement pumps – Rotary (gear, screw, etc.) – Reciprocating (piston, diaphragm, etc.) – Used as injection.
The Centrifugal Pump.
Lesson 26 CENTRIFUGAL PUMPS
Principle, Operation & Maintenance
Reciprocating pump Pumps are used to increase the energy level of water by virtue of which it can be raised to a higher level. Reciprocating pumps are.
Water Pumps.
Pumps Machine that provides energy to a fluid in a fluid system.
Conservation of Mass, Flow Rates
Hydraulic Engineering
Components of Centrifugal pumps
Dr. subhash technical campus
So Far: Mass and Volume Flow Rates Reynolds No., Laminar/Turbulent Pressure Drop in Pipes Flow Measurement, Valves Total Head, Pump Power, NPSH This Week:
Fluid Mechanics and Applications Inter American Chapter 7 MEEN 3110 – Fluid Mechanics and Applications Fall Lecture 07 CENTRIFUGAL PUMP CHARACTERISTICS.
PUMPS, VALVES, & FANS …Moving fluids Objectives Comprehend the basic construction and application of valves used Comprehend the basic construction and.
Positive Displacement Pumps.
7.3 ENERGY LOSSES AND ADDITIONS  Objective: to describe general types of devices and components of fluid flow systems.
PRESENTED BY : N.SRIKAUSIGARAMAN
SUBJECT CODE NAME OF SUBJECT TOPIC :::::: FLUID POWER ENGINEERING CENTRIFUGAL PUMP Parul Institute of Engineering & Technology.
So Far: Mass and Volume Flow Rates Reynolds No., Laminar/Turbulent Pressure Drop in Pipes Flow Measurement, Valves Total Head, Pump Power, NPSH This Week:
1 CEE 426 Wastewater Treatment Plant Design November 12, 2012 Thomas E. Jenkins President JenTech Inc N. Elm Tree Road Milwaukee, WI
Parul Institute of Engineering & Technology Subject Code : Name Of Subject :Fluid Power Engineering Topic :Rotodynamic Pumps.
Introduction to Energy Management
CE 3372 Water Systems Design
Parul Institute of Technology
Submitted by Pradeep pataskar Roll no.11031M02034.
GUJARAT TECHNOLOGICAL UNIVERSITY (GTU) Mahatma Gandhi Institute Of Technical Education and Research Center, Navsari Affiliated with GTU Presentation on.
L.J.INSTITUTE OF ENGINEERING AND TECHNOLOGY compressors Shah Aadishkumar Aileshbhai (enrollment no ) (div A roll no. 55) Guided by Mr.hemangsir.
Chapter 3 – Hydraulic Pumps
Prepared By Rohit G. Sorte M.Tech
A.D PATEL INST OF TECH. NAME : SETA BHAUMIK D. ( ) TOPIC : CENTRIFUGAL PUMPS FACULTY : BHAUMIK SHETH.
Active Learning Assignment, FFO, BE- Sem 3rd – 2nd year
Fluid Mechanics for Chemical Engineers Arif Hussain (Lecturer)
Miscellaneous Hydraulic Machine
AHMEDABAD INSTITUTE OF TECHNOLOGY. TOPIC: RECIPROCATING PUMPS NAME: (1)SAKARIYA BRIJESH ( ) (2)RAVAL JAINIL ( ) (3)RAVAL YASH ( )
AN INTRODUCTION TO PUMPING EQUIPMENT Principle, Operation & Maintenance.
System One Pumps S1-200 Centrifugal Hydraulics
Centrifugal Pumps Operation, Selection, Types, Performance
CENTIFUGAL PUMP OPERATION
Chapter 3.
RECIPROCATING MACHINES
Lukhdhirji Engineering College
CE 3372 Water Systems Design
HYDRAULICS & PNEUMATICS
Principle, Operation & Maintenance
Unit No.-06 Reciprocating Pump Fluid Mechanics And Machinery
Pumps Outline: Where are pumps used
Process Equipment Design and Heuristics - Pumps
Review from Lecture 1: Pumps
BAE4400 Topics in Processing
Review from Lecture 1: Pumps
Review from Lecture 1: Pumps
Performance Curves Dr. C. L. Jones Biosystems and Ag. Engineering.
Pumps and pumping station
A course in Turbomachinery Lecturer: Dr.Naseer Al-Janabi
Presented By: Vinod Dahiya Lecturer Mechanical Engg. RGGP Narwana.
Pumps Because of the wide variety of requirements, many different types are in use including centrifugal, piston, gear, screw, and peristaltic pumps. The.
PUMPS AND DRIVERS NCCER
PUMPS Presented by: Neeta Shrestha (073BEL229) Nisha Nepal (073BEL230) Pravash Goit (073BEL232) Pujan Neupane (073BEL233) Rabin Subedi (073BEL234) Ranjeet.
Presentation transcript:

Parul Institute of Engineering & Technology Subject Code : Name Of Subject : Fluid Power Engineering Name of Unit : Pumps Topic : Reciprocating pumps

Water Pumps 

Definition Water pumps are devices designed to convert mechanical energy to hydraulic energy. They are used to move water from lower points to higher points with a required discharge and pressure head. This chapter will deal with the basic hydraulic concepts of water pumps

Pump Classification Turbo-hydraulic (kinetic) pumps Centrifugal pumps (radial-flow pumps) Propeller pumps (axial-flow pumps) Jet pumps (mixed-flow pumps) Positive-displacement pumps Screw pumps Reciprocating pumps

This classification is based on the way by which the water leaves the rotating part of the pump. In radial-flow pump the water leaves the impeller in radial direction, while in the axial-flow pump the water leaves the propeller in the axial direction. In the mixed-flow pump the water leaves the impeller in an inclined direction having both radial and axial components

Schematic diagram of basic elements of centrifugal pump

Schematic diagram of axial-flow pump arranged in vertical operation

Reciprocating Pumps Reciprocating pumps are those which cause the fluid to move using one or more oscillating pistons, plungers or membranes (diaphragms). To 'Reciprocate' means 'To Move Backwards and Forwards'. A 'RECIPROCATING' pump therefore, is one with a forward and backward operating action.

Working Of Reciprocating pumps. In the reciprocating pump a piston sucks the fluid into a cylinder then pushes it up causing the water to rise.

Type & Construction features of reciprocating Pump:-- 1.Position - Vertical - Horizontal 2.Purpose - Metering Pump - Power Pump 3. Piston or Plunger acting : Single acting, Double acting 4. Number of Plunger in One Casing : Single, Duplex, Triplex, Multiplex 5. Liquid End Type : Direct exposed, Diaphragm 6. Plunger direction : Forward, Backward. Reduction

Types of reciprocating pump Simple hand operated Power operated Single acting Double acting

Single acting reciprocating pump In the single acting reciprocating pump, a piston moves inside a cylinder with the help of a piston rod operated by a wheel through a connecting rod. There is one suction pipe and one delivery pipe in the cylinder. When the piston moves outwards, a vacuum is created, the suction valve opens, and the delivery pipe is closed. The water enters through the delivery pipe. When the piston moves downwards, it forces the water in one cylinder outward through the delivery pipe. Water is accordingly lifted up and delivered for use. Flow is not continuous.

Double acting reciprocating pump In the double acting reciprocating pump, two suction and two delivery valves are provided in the same cylinder enabling continuous flow.

Components of Reciprocating Pump:-- Main components of reciprocating pump : - 1.Reduction gear - Coupling - Casing and crankcase – 2.Crankshaft - Connecting Rod – 3.Spacer rod - Plunger – 4.Packing - Check valves – 5.Bearings for crankshaft and connecting rod

Main component of Reciprocating pump:- -

MAIN TERMS a) Brake Horsepower (BHP) Brake horsepower is the actual power required at the pump input shaft in order to achieve the desired pressure and flow. It is defined as the following formula: BHP=(Q ¥ Pd)/(1714 ¥ Em) 102 Pumps Reference Guidewhere: BHP = brake horsepower Q = delivered capacity, (gpm US) Pd = developed pressure, (psi) Em = mechanical efficiency, (% as a decimal) b) Capacity (Q) The capacity is the total volume of liquid delivered per unit of time. This liquid includes entrained gases and solids at specified conditions.

c) Pressure (Pd) The pressure used to determine brake horsepower is the differential developed pressure. Because the suction pressure is usually small relative to the discharge pressure, discharge pressure is used in lieu of differential pressure. d) Mechanical Efficiency (Em) The mechanical efficiency of a power pump at full load pressure and speed is 90 to 95% depending on the size, speed, and construction. e) Displacement (D) Displacement (gpm) is the calculated capacity of the pump with no slip losses. For single-acting plunger or piston pumps, it is defined as the following: Where: D = displacement, (gpm US) A = cross-sectional area of plunger or piston, (in2) M = number of plungers or pistons n = speed of pump, (rpm) s = stroke of pump, (in.) (half the linear distance the plunger or piston moves linearly in one revolution)

f) Slip(s) Slip is the capacity loss as a fraction or percentage of the suction capacity. It consists of stuffing box loss BL plus valve loss VL. However, stuffing box loss is usually considered negligible. g) Valve Loss (VL) Valve loss is the flow of liquid going back through the valve while it is closing and/or seated. This is a 2% to 10% loss depending on the valve design or condition. h) Speed (n) Design speed of a power pump is usually between 300 to 800 rpm depending on the capacity, size, and horsepower. To maintain good packing life, speed is limited to a plunger velocity of 140 to 150 ft/minute. Pump speed is also limited by valve life and allowable suction conditions. i) Pulsations The pulsating characteristics of the output of a power pump are extremely important in pump application. The magnitude of the discharge pulsation is mostly affected by the number of plungers or pistons on the crankshaft.

j) Net Positive Suction Head Required (NPSHR) The NPSHR is the head of clean clear liquid required at the suction centerline to ensure proper pump suction operating conditions. For any given plunger size, rotating speed, pumping capacity, and pressure, there is a specific value of NPSHR. A change in one or more of these variables changes the NPSHR. It is a good practice to have the NPSHA (available) 3 to 5 psi greater than the NPSHR. This will prevent release of vapor and entrained gases into the suction system, which will cause cavitations damage in the internal passages. k) Net Positive Suction Head Available (NPSHA) The NPSHA is the static head plus the atmospheric head minus lift loss, frictional loss, vapor pressure, velocity head, and acceleration loss in feet available at the suction center-line.

General advantages of reciprocating pumps are: Ability to pump water that contains sand Adaptable to low-capacity water supplies where high lifts are required above the pump. Can operate with a variety of head pressures Can be installed in very small diameter wells