Anchoring Magnetic Fields in Turbulent Molecular Clouds Hua-bai Li.

Slides:



Advertisements
Similar presentations
Experimental tasks Spectra Extend to small scale; wavenumber dependence (Taylor hyp.); density, flow Verify existence of inertial range Determine if decorrelation.
Advertisements

Methanol maser polarization in W3(OH) Lisa Harvey-Smith Collaborators: Vlemmings, Cohen, Soria-Ruiz Joint Institute for VLBI in Europe.
1)Disks and high-mass star formation: existence and implications 2)The case of G : characteristics 3)Velocity field in G31.41: rotation or expansion?
3-D Simulations of Magnetized Super Bubbles J. M. Stil N. D. Wityk R. Ouyed A. R. Taylor Department of Physics and Astronomy, The University of Calgary,
Molecular Tracers of Turbulent Shocks in Molecular Clouds Andy Pon, Doug Johnstone, Michael J. Kaufman ApJ, submitted May 2011.
A Survey of the Global Magnetic Fields of Giant Molecular Clouds Giles Novak, Northwestern University Instrument: SPARO Collaborators: P. Calisse, D. Chuss,
Polarization 101 Absorption Emission Scattering. PolarizationPolarization of Background Starlight.
SOFIA/HAWC polarimetry of low-mass YSOs and their environs.
“Magnets in Space” Alyssa A. Goodman Harvard-Smithsonian Center for Astrophysics.
3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry Opportunities for Dust Polarization Surveys C. Darren Dowell (Caltech) 1/30.
Turbulent Reconnection in a Partially Ionized Gas Cracow October 2008 Alex Lazarian (U. Wisconsin) Jungyeon Cho (Chungnam U.) ApJ 603, (2004)
Magnetically Regulated Star Formation in Turbulent Clouds Zhi-Yun Li (University of Virginia) Fumitaka Nakamura (Niigata University) OUTLINE  Motivations.
Polarized Thermal Emission from Interstellar Dust John Vaillancourt Roger Hildebrand, Larry Kirby (U. Chicago) Giles Novak, Megan Krejny, Hua-bai Li (Northwestern)
Magnetic field diffusion in Molecular Clouds Understanding star formation is a central problem of modern astrophysics. In this work we are performing a.
Magnetic Fields in Star Formation Alyssa A. Goodman Harvard-Smithsonian Center for Astrophysics Tyler Bourke Smithsonian Astrophysical Observatory/SMA.
STAR FORMATION STUDIES with the CORNELL-CALTECH ATACAMA TELESCOPE Star Formation/ISM Working Group Paul F. Goldsmith (Cornell) & Neal. J. Evans II (Univ.
Magnetic Field Morphologies in NGC1333 IRAS4A: Evidence for Hour Glass Structure R. Rao (CfA) J. M. Girart (CSIC/IEEC) D. P. Marrone (CfA)
Magnetic fields in Orion’s Veil T. Troland Physics & Astronomy Department University of Kentucky Microstructures in the Interstellar Medium April 22, 2007.
Magnetic Fields: Recent Past and Present Shantanu Basu The University of Western Ontario London, Ontario, Canada DCDLXV, Phil Myers Symposium Thursday,
21 October Introduction to M4 Science Observe 95  m Polarized Radiation l Map the “Magnetic Field of the Milky Way” (Central 100 degrees in l and.
University of Chicago 2007 July 30 SOFIA-POL 2007 The Infrared - Millimeter Polarization Spectrum John Vaillancourt California Institute of Technology.
What is the True Distribution of Star-Forming Material in Molecular Clouds? Alyssa A. Goodman (with N. Ridge & S. Schnee)
WHAT MOLECULAR ABUNDANCES CAN TELL US ABOUT THE DYNAMICS OF STAR FORMATION Konstantinos Tassis Collaborators: Karen Willacy, Harold Yorke, Neal Turner.
The Life Cycle of Giant Molecular Clouds Charlotte Christensen.
CARMA observations of magnetic fields in star-forming filaments Chat Hull Jansky Fellow — Harvard-Smithsonian Center for Astrophysics National Radio Astronomy.
1 Magnetic fields in star forming regions: theory Daniele Galli INAF-Osservatorio di Arcetri Italy.
The Story of Star Birth Shantanu Basu University of Western Ontario CAP Lecture, UWO, April 2, 2003.
The Energy Balance of Clumps and Cores in Molecular Clouds Sami Dib Sami Dib CRyA-UNAM CRyA-UNAM Enrique Vázquez-Semadeni (CRyA-UNAM) Jongsoo Kim (KAO-Korea)
From Clouds to Cores to Protostars and Disks New Insights from Numerical Simulations Shantanu Basu The University of Western Ontario Collaborators: Glenn.
Simulations of Compressible MHD Turbulence in Molecular Clouds Lucy Liuxuan Zhang, CITA / University of Toronto, Chris Matzner,
Observing magnetic fields in star-forming regions Jim Cohen Jim Cohen The University of Manchester Jodrell Bank Observatory The University of Manchester.
ARE MAGNETIC FIELDS AND OUTFLOWS ALIGNED IN PROTOSTELLAR CORES? Chat Hull University of California, Berkeley Radio Astronomy Laboratory 4 April 2013 Institute.
Great Barriers in High Mass Star Formation, Townsville, Australia, Sept 16, 2010 Patrick Koch Academia Sinica, Institute of Astronomy and Astrophysics.
How Stars Form Shantanu Basu Physics & Astronomy University of Western Ontario Preview Western, May 3/4, 2003.
Excesses of Magnetic Flux and Angular Momentum in Stars National Astronomical Observatory (NAOJ) Kohji Tomisaka.
Magnetic activity in protoplanetary discs Mark Wardle Macquarie University Sydney, Australia Catherine Braiding (Macquarie) Arieh Königl (Chicago) BP Pandey.
ARE MAGNETIC FIELDS AND OUTFLOWS ALIGNED IN PROTOSTELLAR CORES? Chat Hull University of California, Berkeley Radio Astronomy Laboratory 28 September 2013.
1 Direct Evidence for Two-Fluid Effects in Molecular Clouds Chad Meyer, Dinshaw Balsara & David Tilley University of Notre Dame.
THE ROLE OF MAGNETIC FIELDS
CARMA Large Area Star-formation SurveY  Completing observations of 5 regions of square arcminutes with 7” angular resolution in the J=1-0 transitions.
Magnetic Fields in Molecular Clouds Richard M. Crutcher University of Illinois Collaborators:Tom Troland, University of Kentucky Edith Falgarone, Ecole.
Magnetic Fields: Recent Progress and Future Tests Shantanu Basu The University of Western Ontario EPoS 2008, Ringberg Castle, Germany July 29, 2008.
Shih-Ping Lai 賴詩萍 (National Tsing-Hua University, Taiwan) 清華大學, 台灣.
From Clouds to Cores: Magnetic Field Effects on the Structure of Molecular Gas Shantanu Basu University of Western Ontario, Canada Collaborators: Takahiro.
Are magnetic fields and outflows aligned in protostellar cores?
SFUMATO: A self-gravitational MHD AMR code Tomoaki Matsumoto ( Hosei Univerisity ) Circumstellar disk Outflow Magnetic field Protostar Computational domain.
Comparing Poynting flux dominated magnetic towers with kinetic-energy dominated jets Martín Huarte-Espinosa, Adam Frank and Eric Blackman, U. of Rochester.
Core Formation due to Magnetic Fields, Ambipolar Diffusion, and Turbulence Shantanu Basu The University of Western Ontario Collaborators: Glenn Ciolek.
Philamentary Structure and Velocity Gradients in the Orion A Cloud
Gravitational Collapse and Disk Formation in Magnetized Cores Susana Lizano CRyA, UNAM Transformational Science with ALMA: From Dust to Rocks to Planets,
Fitting Magnetized Molecular Cloud Collapse Models to NGC 1333 IRAS 4A Pau Frau Josep Miquel Girart Daniele Galli Institut de Ciències de l’Espai (IEEC-CSIC)
Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka.
Possible Future Spectroscopic Star Formation Surveys James Di Francesco (National Research Council Herzberg)
1 Probing MHD Shocks with high-J CO observations: W28F SOFIA Observations 1.W28 is a mature supernova remnant (>2x10 4 yr old) located in the Inner Galaxy.
Magnetic Fields and Protostellar Cores Shantanu Basu University of Western Ontario YLU Meeting, La Thuile, Italy, March 24, 2004.
A Survey of the Global Magnetic Fields of Giant Molecular Clouds Giles Novak, Northwestern University Instrument: SPARO Collaborators: P. Calisse, D. Chuss,
ARE MAGNETIC FIELDS AND OUTFLOWS ALIGNED IN PROTOSTELLAR CORES? Chat Hull University of California, Berkeley Radio Astronomy Laboratory 8 July 2013 CARMA.
VLBA Observations of AU- scale HI Structures Crystal Brogan (NRAO/NAASC) W. M. Goss (NRAO), T. J. W. Lazio (NRL) SINS Meeting, Socorro, NM, May 21, 2006.
Characterizing Magnetized Turbulence through Magnetic Field Dispersion Martin Houde The University of Western Ontario CC2YSO - 19 May 2010.
The Turbulent Interstellar Medium Far-IR Spectropolarimetry and CMB Foregrounds A CALISTO polarimeter will provide the unique opportunity to study the.
Magnetic Fields in Star and Planet Formation Frank H. Shu UCSD Physics Department Stars to Planets -- University of Florida 12 April 2007.
A resolution of the magnetic braking catastrophe during the second collapse cc2yso UWO, May 17, 2010 – Wolf Dapp Wolf B. Dapp & Shantanu Basu.
Exploring reconnection, current sheets, and dissipation in a laboratory MHD turbulence experiment David Schaffner Bryn Mawr College Magnetic Reconnection:
Polarized Light from Star-Forming Regions
Prestellar core formation simulations in turbulent molecular clouds with large scale anisotropy Nicolas Petitclerc, James Wadsley and Alison Sills McMaster.
A Turbulent Local Environment
The University of Western Ontario
Tomoaki Matsumoto (Hosei Univ. / NAOJ) Masahiro N. Machida (NAOJ)
Provacative Suggestion
Dust Polarization in Galactic Clouds with PICO
Presentation transcript:

Anchoring Magnetic Fields in Turbulent Molecular Clouds Hua-bai Li

~ 10 pc Price & Bate 2008 Girart et al AU Flux Freezing : a feature of idea MHD Burkhart et al. ‘09 Sub- or Super- Alfvénic clouds ? Tang et al kAU Hua-bai CC2YSO 2010

3 100 pc The Background (BK) is IRAS 100  m optical 1 pc Hertz Li et al (in prep.) Flux Freezing : a feature of idea MHD Multi-Scale B-Field Observation of NGC 6334 Li et al Hua-bai CC2YSO 2010

ABCDABCD NGC 2071 NGC 2068 NGC 2024 IRAS E F G H OMC-3 OMC-2 OMC-1 OMC pc background: IRAS 100  m optical data (Heiles 2000) Li et al Optical vs. Submm polarimetry Hua-bai CC2YSO 2010

Core Fields vs ICM Fields Observations vs Simulations Flux Freezing : a feature of idea MHD Inside Cores vs. Inter Clouds Hua-bai CC2YSO 2010

Flux Freezing : a feature of idea MHD 1. Anisotropic Gravitational Collapse Tassis et al pc 0.6 pc0.1 pc Li et al (in prep.) Hua-bai CC2YSO 2010

Flux Freezing : a feature of idea MHD 0.6 pc 2. Turbulence Anisotropy Li et al (in prep.) Heyer et al TMC Av ~ 1 Hua-bai CC2YSO pc Price & Bate 2008 B simulation

Flux Freezing : a feature of idea MHD 0.6 pc 2. Turbulence Anisotropy Li et al (in prep.) Av > 7 Hua-bai CC2YSO pc Price & Bate 2008 Av ~ 100 B simulation 200” 300” 400”500” HCO+

0.1 pc Flux Freezing : a feature of idea MHD 0.6 pc 3. Turbulent Ambipolar Diffusion Li et al Li & Houde 2008 Hua-bai CC2YSO 2010 ion neutral Houde et al Tilley & Balsara 2010 simulation Ions and neutrals have different turbulent energy spectra in the AD scales which gives different linewidths measured in the inertial range. This difference is correlated with field strength ion neutral HCO+

Flux Freezing : a feature of idea MHD Summary 1. Clouds are sub-Alfvénic. 2. Local Galactic fields anchor in clouds down to cores ~ 0.1 pc, where B ~ 1mG, n(H 2 ) ~ 10^6 3. The following consequences from dynamically important magnetic fields are observed in various densities: a. anisotropic gravitational collapse b. turbulent ambipolar diffusion c. turbulence anisotropy Hua-bai CC2YSO 2010 random outflow direction Curran & Chrysostomou 2007 initial/boundary conditions of cc2yso

Li, Hua-bai; Houde, Martin; Lai, Shih-ping; Sridharan, T. K., 2010, arXiv: Li, Hua-bai; Dowell, C. Darren; Goodman, Alyssa; Hildebrand, Roger; Novak, Giles, 2009, ApJ, 704, 891 Curran, R. L.; Chrysostomou, A., 2007, MNRAS, 382, 699 Price, D. & Bate, M., 2008, MNRAS, 385, 1820 Dotson, J. et al., 2010, ApJS, 186, 406