COSIRES 2004 © Matej Mayer Bayesian Reconstruction of Surface Roughness and Depth Profiles M. Mayer 1, R. Fischer 1, S. Lindig 1, U. von Toussaint 1, R.

Slides:



Advertisements
Similar presentations
M. Mayer SEWG Fuel Retention June Sample Analysis for TS, AUG and JET: Depth Profiling of Deuterium M. Mayer Max-Planck-Institut für Plasmaphysik,
Advertisements

Bayesian Belief Propagation
Equipe Couches Nanométriques : Formation, Interfaces, Défauts
Analysis of the Visible Absorption Spectrum of I 2 in Inert Solvents Using a Physical Model Joel Tellinghuisen Department of Chemistry Vanderbilt University.
Ion Beam Analysis techniques:
Estimation, Variation and Uncertainty Simon French
Rutherford Backscattering Spectrometry
PIGE experience in IPPE Institute of Physics and Power Engineering, Obninsk, Russia A.F. Gurbich.
ERDA, for measurement of hydrogen in PV applications
Study of sputtering on thin films due to ionic implantations F. C. Ceoni, M. A. Rizzutto, M. H. Tabacniks, N. Added, M. A. P. Carmignotto, C.C.P. Nunes,
Setup for large area low-fluence irradiations with quasi-monoenergetic 0.1−5 MeV light ions M. Laitinen 1, T. Sajavaara 1, M. Santala 2 and Harry J. Whitlow.
Rutherford Backscattering Spectrometry
Introduction to Hadronic Final State Reconstruction in Collider Experiments Introduction to Hadronic Final State Reconstruction in Collider Experiments.
Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.
MiniSIMS Secondary Ion Mass Spectrometer Dr Clive Jones Millbrook Instruments Limited Blackburn Technology Centre, England
Cross section measurements for analysis of D and T in thicker films Liqun Shi Institute of Modern Physics, Fudan University, Shanghai, , People’s.
Proximity Effect in EBL Jian Wu Feb. 11, Outline Introduction Physical and quantitative model of proximity effect Reduction and correction of proximity.
Statistical Analysis of Systematic Errors and Small Signals Reinhard Schwienhorst University of Minnesota 10/26/99.
Electron-impact inner shell ionization cross section measurements for heavy element impurities in fusion reactors Jingjun Zhu Institute of Nuclear Science.
Atmospheric Neutrino Oscillations in Soudan 2
Abstract A time resolved radial profile neutron diagnostic is being designed for the National Spherical Torus Experiment (NSTX). The design goal is to.
1 Institute of Engineering Mechanics Leopold-Franzens University Innsbruck, Austria, EU H.J. Pradlwarter and G.I. Schuëller Confidence.
Ruđer Bošković Institute, Zagreb, Croatia CRP: Development of a Reference Database for Ion Beam Analysis Measurements of differential cross sections for.
Blue: Histogram of normalised deviation from “true” value; Red: Gaussian fit to histogram Presented at ESA Hyperspectral Workshop 2010, March 16-19, Frascati,
Ion Beam Analysis Dolly Langa Physics Department, University of Pretoria, South Africa Blane Lomberg Physics Department, University of the Western Cape,
FRANK LABORATORY OF NEUTRON PHYSICS ION BEAM ANALYSIS STANCIU-OPREAN LIGIA SUPERVISOR DR. KOBZEV ALEXANDER.
Udo_ME2006.ppt, © Udo v. Toussaint, 11. July Bayesian Analysis of Ellipsometry Measurements Udo v. Toussaint and Thomas Schwarz-Selinger Ellipsometry.
FRANK LABORTORY OF NEUTRON PHYSICS ION BEAM ANALYSIS
Bayesian Inversion of Stokes Profiles A.Asensio Ramos (IAC) M. J. Martínez González (LERMA) J. A. Rubiño Martín (IAC) Beaulieu Workshop ( Beaulieu sur.
ECE 8443 – Pattern Recognition LECTURE 07: MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION Objectives: Class-Conditional Density The Multivariate Case General.
Surface Structure Analysis in Ⅰ ) Low Energy Ion Scattering Ⅱ ) Medium Energy Ion Scattering Simultaneous Determination of Atomic Arrangement (not only.
Ion Beam Analysis of Gold Flecks in a Foam Lattice F E Gauntlett, A S Clough Physics Department, University of Surrey, Guildford, GU2 7XH, UK.
3/2003 Rev 1 II.3.15b – slide 1 of 19 IAEA Post Graduate Educational Course Radiation Protection and Safe Use of Radiation Sources Part IIQuantities and.
MS Calibration for Protein Profiles We need calibration for –Accurate mass value Mass error: (Measured Mass – Theoretical Mass) X 10 6 ppm Theoretical.
Ion Beam Analysis Today and Tomorrow Ferenc Pászti Research Institute for Particle and Nuclear Physics, Budapest 20+5 min.
2. RUTHERFORD BACKSCATTERING SPECTROMETRY Basic Principles.
Experimental part: Measurement the energy deposition profile for U ions with energies E=100 MeV/u - 1 GeV/u in iron and copper. Measurement the residual.
Víctor M. Castillo-Vallejo 1,2, Virendra Gupta 1, Julián Félix 2 1 Cinvestav-IPN, Unidad Mérida 2 Instituto de Física, Universidad de Guanajuato 2 Instituto.
DEVELOPMENT OF BETA SPECTROMETRY USING CRYOGENIC DETECTORS M. Loidl, C. Le-Bret, M. Rodrigues, X. Mougeot CEA Saclay – LIST / LNE, Laboratoire National.
ECE 8443 – Pattern Recognition ECE 8527 – Introduction to Machine Learning and Pattern Recognition LECTURE 07: BAYESIAN ESTIMATION (Cont.) Objectives:
CHAPTER 17 O PTIMAL D ESIGN FOR E XPERIMENTAL I NPUTS Organization of chapter in ISSO –Background Motivation Finite sample and asymptotic (continuous)
Quantum Beating Patterns in the Surface Energy of Pb Film Nanostructures Peter Czoschke, Hawoong Hong, Leonardo Basile and Tai-Chang Chiang Frederick Seitz.
Molecular Dynamics Study of Ballistic Rearrangement of Surface Atoms During Ion Bombardment on Pd(001) Surface Sang-Pil Kim and Kwang-Ryeol Lee Computational.
ITPA May 2007 © Matej Mayer Carbon Erosion and Transport in ASDEX Upgrade M. Mayer 1, V. Rohde 1, J.L. Chen 1, X. Gong 1, J. Likonen 3, S. Lindig 1, G.
- 1 - Overall procedure of validation Calibration Validation Figure 12.4 Validation, calibration, and prediction (Oberkampf and Barone, 2004 ). Model accuracy.
Basics of Ion Beam Analysis
Ion Beam Analysis of the Composition and Structure of Thin Films
High Resolution Depth Profiling of Ti Oxidation
Rutherford Backscattering Spectrometry (RBS)
Jan. 18, 2008 Hall C Meeting L. Yuan/Hampton U.. Outline HKS experimental goals HKS experimental setup Issues on spectrometer system calibration Calibration.
Univariate Gaussian Case (Cont.)
Spectrum Reconstruction of Atmospheric Neutrinos with Unfolding Techniques Juande Zornoza UW Madison.
Maximum likelihood estimators Example: Random data X i drawn from a Poisson distribution with unknown  We want to determine  For any assumed value of.
Measuring fusion excitation functions with RIBs using the stacked target technique: problems and possible solutions Maria Fisichella Nucleus Nucleus 2015.
 0 life time analysis updates, preliminary results from Primex experiment 08/13/2007 I.Larin, Hall-B meeting.
In Bayesian theory, a test statistics can be defined by taking the ratio of the Bayes factors for the two hypotheses: The ratio measures the probability.
IAEA CRP Nuclear data for IBA © Matej Mayer Identification of the most important cross section data M. Mayer Max-Planck-Institut für Plasmaphysik, EURATOM.
September 10, 2002M. Fechner1 Energy reconstruction in quasi elastic events unfolding physics and detector effects M. Fechner, Ecole Normale Supérieure.
A New Upper Limit for the Tau-Neutrino Magnetic Moment Reinhard Schwienhorst      ee ee
Monte Carlo methods in spallation experiments Defense of the phD thesis Mitja Majerle “Phasotron” and “Energy Plus Transmutation” setups (schematic drawings)
Electron probe microanalysis EPMA
Unfolding Problem: A Machine Learning Approach
Electron probe microanalysis EPMA
Where did we stop? The Bayes decision rule guarantees an optimal classification… … But it requires the knowledge of P(ci|x) (or p(x|ci) and P(ci)) We.
ION BEAM ANALYSIS.
LECTURE 09: BAYESIAN LEARNING
Juande Zornoza UW Madison
CS639: Data Management for Data Science
Ion-beam, photon and hyperfine methods in nano-structured materials
Ion Beam Analysis (IBA)
Presentation transcript:

COSIRES 2004 © Matej Mayer Bayesian Reconstruction of Surface Roughness and Depth Profiles M. Mayer 1, R. Fischer 1, S. Lindig 1, U. von Toussaint 1, R. Stark 2, V. Dose 1 1 Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching, Germany 2 University of Munich, Section Crystallography, München, Germany Introduction to Bayesian data analysis Improvement of the detector energy resolution by deconvolution of apparatus function Reconstruction of depth profiles of elements Reconstruction of surface roughness profiles with RBS

COSIRES 2004 © Matej Mayer MeV Ion Beam Analysis Sample MeV ions E Elemental composition and depth profiles of elements  Quantitative without reference samples Overlap of mass- and depth-information  Complicated data analysis Limited energy resolution of solid state detectors  Limits to mass- and depth resolution

COSIRES 2004 © Matej Mayer “Classical” IBA Data Analysis Parameters  (layer thickness, layer composition,...) Forward calculation p(d , I) = f(  2 ) “Classical” data analysis  fitting: 1. Assume sample parameters  2. Perform forward calculation, calculate  2 3. Vary  until  2 is minimal Sample

COSIRES 2004 © Matej Mayer Bayesian Data Analysis Parameters  Forward calculation p(d , I) Backward calculation, inverse problem p(  d, I) Bayes’ theorem p(  I) : Prior probability I : Additional background information Sample

COSIRES 2004 © Matej Mayer Bayesian Data Analysis (2) How to choose the prior probability p(  I) ?  Most uninformative prior for spectra is the entropic prior J. Skilling 1991  Solution with maximum information entropy  Additional previous information about  can be included Many solutions with identical entropy  Select simplest model consistent with the data  Adaptive kernels R. Fischer et al., 1996  Favours smooth solutions Marginalization  Allows to eliminate uninteresting variables

COSIRES 2004 © Matej Mayer Bayesian Data Analysis (3) The resulting distribution p(  |d, I) contains the complete knowledge of   mean value, most probable value of   error interval for  Note that  2 - minimising (fitting) will find most probable value

COSIRES 2004 © Matej Mayer Deconvolution of the Apparatus Function < 1 keV keV Detector Sample straggling Measured spectrum: A : Apparatus function f(E) : Spectrum for “ideal” detector Discrete spectrum: Direct inversion: Does not work in presence of noise  MeV

COSIRES 2004 © Matej Mayer Deconvolution of the Apparatus Function (2) Example: Mock data set blurred with Gaussian apparatus function noise added with Poisson statistics R. Fischer et al., NIM B (1998) 1140

COSIRES 2004 © Matej Mayer Deconvolution of the Apparatus Function (3) Example: Cu on Si Apparatus function measured with ultra-thin Co layer Initial resolution: 19 keV FWHM After deconvolution: 3 keV FWHM  better by factor 3 than theoretical limit of 8 keV for solid state detectors 2.6 MeV 4 He, 165° R. Fischer et al., Phys. Rev. E55 (1997) 6667 R. Fischer et al., NIM B (1998) 1140

COSIRES 2004 © Matej Mayer Deconvolution of the Apparatus Function (4) Example: Cu on Si Error of apparatus function is taken into account Error bars, confidence intervals are obtained R. Fischer et al., Phys. Rev. E55 (1997) 6667 R. Fischer et al., NIM B (1998) 1140

COSIRES 2004 © Matej Mayer Deconvolution of the Apparatus Function (5) Example: Co-Au multilayer Apparatus function for Co and Au from ultra-thin films R. Fischer et al., Phys. Rev. E55 (1997) 6667 R. Fischer et al., NIM B (1998) 1140

COSIRES 2004 © Matej Mayer Reconstruction of depth profiles

COSIRES 2004 © Matej Mayer Reconstruction of depth profiles Forward calculation “Classical” data analysis: Minimise  2 by varying elemental concentrations in layers Many parameters (  100)  simulated annealing C. Jeynes et al., J. Phys. D: Appl. Phys. 36 (2003) R97  Fast + reliable, sufficient for many applications But: Not a full solution of the inverse problem  Exactly one result (with  2 min )  p(  |d, I) remains unknown  no error bars or confidence intervals 

COSIRES 2004 © Matej Mayer Reconstruction of depth profiles (2) p(  |d, I) Bayesian data analysis: Calculate p(  |d, I) using maximum entropy prior  : Concentrations of elements in the layers 

COSIRES 2004 © Matej Mayer Reconstruction of depth profiles (2) 12 C 13 C D 12 C Plasma Mixture of 13 C/ 12 C due to plasma exposure  Depth profiles from Bayesian data analysis Energy of backscattered 4 He [keV] Counts before after (scaled) 13 C 12 C U. von Toussaint et al., New Journal of Physics 1 (1999) 11.1

COSIRES 2004 © Matej Mayer Reconstruction of depth profiles (3) Depth [10 15 atoms/cm 2 ] Concentration before after Channel Counts Data Simulation after O 13 C 12 C U. von Toussaint et al., New Journal of Physics 1 (1999) 11.1 Note asymmetric confidence intervals

COSIRES 2004 © Matej Mayer Reconstruction of surface roughness distributions Other types of roughness: N. Barradas et al., NIM B217 (2004) 479 Layer roughness Distribution p(d) Substrate roughness Distribution p(  ) In on Si, 2 MeV 4 He, 165°

COSIRES 2004 © Matej Mayer Reconstruction of surface roughness distributions (2) = Correlation effects are neglected  valid, if lateral variation  > d for typical RBS angles of 160°-170° M. Mayer, NIM B194 (2002) 177  Distribution p(d)

COSIRES 2004 © Matej Mayer Can we use RBS for measuring p(d) without prior knowledge of the distribution function? Reconstruction of surface roughness distributions (3) 1.5 MeV 4 He, Ni on C 2 MeV 4 He, Ni/Al/O on C Distribution p(d) ?   -distribution is successful in many cases M. Mayer, NIM B194 (2002) 177

COSIRES 2004 © Matej Mayer Reconstruction of surface roughness distributions (4) 200 nm In on Si SEM 2  m AFM 2  m RBS 2 MeV 4 He, 165° Reconstruction of p(d) from RBS

COSIRES 2004 © Matej Mayer Reconstruction of surface roughness distributions (5) Film thickness distributionRBS spectrum Simulation How well does this compare with other methods?

COSIRES 2004 © Matej Mayer Reconstruction of surface roughness distributions (6) 2  m backscattered electrons 25 keV, normal incidence secondary electrons tilt 70°  Intensity of backscattered electrons depends on In thickness  Thickness distribution from grey-values

COSIRES 2004 © Matej Mayer Reconstruction of surface roughness distributions (7) 2  m Good agreement for large blobs (around 200 nm) Small blobs are only visible with RBS and SEM, but not AFM

COSIRES 2004 © Matej Mayer Disadvantages of Bayesian Data Analysis Computational: Complicated (and sometimes scaring) mathematics Longer computing times, compared to fitting Experimental: High quality experimental data required – apparatus function with good statistics – reliable energy calibration –...  longer experimental time

COSIRES 2004 © Matej Mayer Conclusions Bayesian data analysis provides a consistent probabilistic theory for the solution of inverse problems  Determines sample parameters plus confidence intervals  Uncertainties of input parameters can be taken into account Deconvolution of apparatus function: Resolution improvement by factor 6 Depth profiles of elements with confidence intervals Surface-roughness distribution from RBS  New method for surface roughness measurements