STANFORD Advanced LIGO Photodiode Development ______ David B. Jackrel, Homan B. Yuen, Seth R. Bank, Mark A. Wistey, Xiaojun Yu, Junxian Fu, Zhilong Rao, and James S. Harris, Jr. Solid State Research Lab, Stanford University LSC Meeting – LLO March 22 nd, 2005 LIGO-G Z
STANFORD Outline l AdLIGO Photodiode Specifications l Device Results l Damage Threshold l AdLIGO Devices l Future Directions
STANFORD Advanced LIGO Schematic Power Stabilization Auxiliary Length Sensing
STANFORD Photodiode Specifications LIGO IAdvanced LIGO Detector Bank of 6PDs Power Stabilization Aux. Length (RF) Detection DC - GW Channel Steady- State “Power” 0.6 W200 ~ 300 mA10 – 100 mW30 mW Operating Frequency ~29 MHz100 kHz200 MHz100 kHz Quantum Efficiency 80% > 80% 90% (300mA)/(0.868A/W * 0.90 QE) = 385mW Resonating Tank Circuit Trades w/ Sensitivity
STANFORD Conventional PDAdv. LIGO Rear-Illuminated PD l High Power l Linear Response l High Speed Rear-Illuminated PD Advantages
STANFORD Materials Analysis – InGaAs/GaAs vs. GaInNAs/GaAs l X-Ray Diffraction l Transmission Electron Microscopy l Surface Roughness Mapping l Photoluminescence l Deep-Level Transient Spectroscopy l Absorption Spectra l Etc.
STANFORD Device Internal Quantum Efficiency (Low Power ~ 50 mW)
STANFORD External Quantum Efficiency – Thick Substrate Ext. Efficiency Optical Power (mW) Bias (Volts)
STANFORD Damage Threshold – LLO Devices (9/23/03) P > 2e6 W/cm 2 (???) (>180 W in 100 m spot)
STANFORD LHO Damaged PDs – Shutter Problems (2/22/05) Damaged Devices Undamaged Devices “…acoustic coupling…” -Robert Schofield
STANFORD LHO Damaged PDs – Shutter Problems (2/18/05) No injected Peak at 280 Hz
STANFORD Rear-Illuminated Damage-Threshold Test
STANFORD Front-Illuminated Damage-Threshold Test
STANFORD AdLIGO Devices Detector Power Stabilization Aux. Length Sensing GW Channel Diameter 3 mm1.5 mm 1 mm (or larger?) Steady-State Power 300 mW100 mW50 mW 3-dB 1/RC Bandwidth 5 MHz 30 MHz ( 180 MHz?) 60 MHz Quantum Efficiency > 80 %80 ~ 90 % Damage Threshold ?Important?!
STANFORD AdLIGO Devices: Commercial Vendors
STANFORD In Progress / Future Directions l Substrate removal l GaInNAs(Sb) growth (w/ upgraded system) l ARC l 1/f noise experiments Successor - Zhilong Rao l Packaging devices / Testing components l Higher saturation power? ( RF detection?) l Surface uniformity?, Backscatter?, etc.
STANFORD Future Directions – What types of diodes are needed? Quantum Efficiency? Damage Threshold? Saturation Power? RF detection AdLIGO laser stabilization Electronic Noise? DC RF? (180 MHz) Frequency Response? Commercially available? Other???
STANFORD XRD Reciprocal Space Map (004) MM-InGaAsGaInNAs
STANFORD Surface Roughness MM-InGaAs RMS = 6.2 nm GaInNAs RMS = 0.8 nm [110][-110]
STANFORD Optimizing Post-Growth Anneal
STANFORD Scanning Photoluminescence Intensity InGaAs: Uniformity: 10.8% GaInNAs Uniformity: 15.9%
STANFORD Scanning PL Intensity Maps InGaAsGaInNAs
STANFORD GaInNAs Temp. Dependent PL: Localization Energy
STANFORD SampleActivation Energy (eV) Trap Density (cm -3 ) Capture Cross-Section (cm 2 ) LM - GaInNAs x x x x x x x x MM - InGaAs x x x x Deep Level Transient Spectroscopy Majority Carrier Traps
STANFORD 1 m GaInNAs Film Transmission
STANFORD 2 m InGaAs Absorption Spectrum
STANFORD InGaAs vs. GaInNAs Dark I Density
STANFORD Dark and Photocurrent (SNR)
STANFORD Photovoltaic Response
STANFORD C-V Curves GaInNAs: 1/RC 7 MHz InGaAs: 1/RC 15 MHz
STANFORD LCR Resonant Circuit Modeling FWHM 15 MHz
STANFORD Damage Threshold Tests LIGO 1 power in each arm (W)ITM transmissionTotal Power on AS-PDSpot Radius (um)Area (cm2)Power Density (W/cm2) E E E E E E E E E E+06 AdLIGO power in each arm (W)ITM transmissionTotal Power on AS-PDSpot Radius (um)Area (cm2)Power Density (W/cm2) 8.30E E E E E E E+08