Intelligent Database Systems Lab Presenter : Chang,Chun-Chih Authors : CHRISTOS BOURAS, VASSILIS TSOGKAS 2012, KBS A clustering technique for news articles.

Slides:



Advertisements
Similar presentations
Intelligent Database Systems Lab Presenter : WU, MIN-CONG Authors : KADIM TA¸SDEMIR, PAVEL MILENOV, AND BROOKE TAPSALL 2011,IEEE Topology-Based Hierarchical.
Advertisements

Intelligent Database Systems Lab Presenter: WU, JHEN-WEI Authors: Jorge Gorricha, Victor Lobo CG Improvements on the visualization of clusters in.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Clustering data in an uncertain environment using an artificial.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A novel document similarity measure based on earth mover’s.
Intelligent Database Systems Lab Presenter : YAN-SHOU SIE Authors : Christos Ferles ∗, Andreas Stafylopatis NN Self-Organizing Hidden Markov Model.
Intelligent Database Systems Lab Presenter: HONG, CHIA-TSE Authors: Yen-Hsien Lee, Chih-Ping Wei, Tsang-Hsiang Cheng, Ching-Ting Yang DSS Nearest-neighbor-based.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Fast exact k nearest neighbors search using an orthogonal search tree Presenter : Chun-Ping Wu Authors.
Intelligent Database Systems Lab Presenter: YU-TING LU Authors: Liang-Chu Chen, Ting-Jung Yu, Chia-Jung Hsieh ACM KeyGraph-based chance discovery.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology U*F clustering : a new performant “ clustering-mining ”
Intelligent Database Systems Lab N.Y.U.S.T. I. M. BNS Feature Scaling: An Improved Representation over TF·IDF for SVM Text Classification Presenter : Lin,
Intelligent Database Systems Lab Presenter : CHANG, SHIH-JIE Authors : Shih-Hwa Liu*,Gwo-Guang Lee 2013.CE Using a concept map knowledge management system.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 A semantic approach for question classification using.
Intelligent Database Systems Lab Presenter : YAN-SHOU SIE Authors : JEROEN DE KNIJFF, FLAVIUS FRASINCAR, FREDERIK HOGENBOOM DKE Data & Knowledge.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Evaluation of novelty metrics for sentence-level novelty mining Presenter : Lin, Shu-Han Authors : Flora.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 A Comprehensive Comparison Study of Document Clustering.
Intelligent Database Systems Lab Presenter: WU, MIN-CONG Authors: Zhiyuan Liu, Xinxiong Chen, Yabin Zheng, Maosong Sun 2011, FCCNLL Automatic Keyphrase.
Intelligent Database Systems Lab Presenter : Chang,Chun-Chih Authors : Miin-Shen Yang a*, Wen-Liang Hung b, De-Hua Chen a 2012, FSS Self-organizing map.
Intelligent Database Systems Lab Presenter : JHOU, YU-LIANG Authors :Shady Shehata, Fakhri Karray, Mohamed S. Kamel, Fellow 2012, IEEE An Efficient Concept-Based.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. SpotSigs: Robust and Efficient Near Duplicate Detection in Large Web Collections Presenter: Tsai Tzung.
Intelligent Database Systems Lab Presenter : YAN-SHOU SIE Authors Mohamed Ali Hadj Taieb *, Mohamed Ben Aouicha, Abdelmajid Ben Hamadou KBS Computing.
Intelligent Database Systems Lab Presenter : JIAN-REN CHEN Authors : Sheng-Tun Li a,b,*, Fu-Ching Tsai a 2013, KBS A fuzzy conceptualization model for.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Determining the best K for clustering transactional datasets – A coverage density-based approach Presenter.
Intelligent Database Systems Lab Presenter : Kung, Chien-Hao Authors : Kerstin Bunte, Barbara Hammer, Thomas Villmann, Michael Biehl, Axel Wismuller 2011,
Presenter : Lin, Shu-Han Authors : Jeen-Shing Wang, Jen-Chieh Chiang
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Automatic Recommendations for E-Learning Personalization.
Cube Kohonen Self-Organizing Map (CKSOM) Model
Intelligent Database Systems Lab N.Y.U.S.T. I. M. An IPC-based vector space model for patent retrieval Presenter: Jun-Yi Wu Authors: Yen-Liang Chen, Yu-Ting.
Intelligent Database Systems Lab Presenter : Chang,Chun-Chih Authors : Youngjoong Ko, Jungyun Seo 2009, IPM Text classification from unlabeled documents.
Intelligent Database Systems Lab Presenter : JIAN-REN CHEN Authors : Cihan Kaleli, Huseyin Polat 2012, KBS Privacy-preserving SOM-based recommendations.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A Plagiarism Detection Technique for Java Program Using.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. A fast nearest neighbor classifier based on self-organizing incremental neural network (SOINN) Neuron.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A k-mean clustering algorithm for mixed numeric and categorical.
Intelligent Database Systems Lab Presenter : Kung, Chien-Hao Authors : Medhdi Khashei, Mehdi Bijari 2011, ASOC A novel hybridization of artificial neural.
Intelligent Database Systems Lab Presenter : BEI-YI JIANG Authors : GUENAEL CABANES, YOUNES BENNANI, DOMINIQUE FRESNEAU ELSEVIER Improving the Quality.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Word sense disambiguation of WordNet glosses Presenter: Chun-Ping Wu Author: Dan Moldovan, Adrian Novischi.
Intelligent Database Systems Lab Presenter : Chang,Chun-Chih Authors : David Milne *, Ian H. Witten 2012, AI An open-source toolkit for mining Wikipedia.
Intelligent Database Systems Lab Presenter : Kung, Chien-Hao Authors : Eghbal G. Mansoori 2011,IEEE FRBC: A Fuzzy Rule-Based Clustering Algorithm.
Intelligent Database Systems Lab Presenter : BEI-YI JIANG Authors : HAI V. PHAM, ERIC W. COOPER, THANG CAO, KATSUARI KAMEI INFORMATION SCIENCES Hybrid.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Extending the Growing Hierarchal SOM for Clustering Documents.
Intelligent Database Systems Lab Presenter : WU, MIN-CONG Authors : YUNG-MING LI, TSUNG-YING LI 2013, DSS Deriving market intelligence from microblogs.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. 1 Visualization of multi-algorithm clustering for better economic decisions - The case of car pricing.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Mining massive document collections by the WEBSOM method Presenter : Yu-hui Huang Authors :Krista Lagus,
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 An initialization method to simultaneously find initial.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Enhanced neural gas network for prototype-based clustering.
Intelligent Database Systems Lab Presenter: CHANG, SHIH-JIE Authors: Luca Cagliero, Paolo Garza 2013.DKE. Improving classification models with taxonomy.
Intelligent Database Systems Lab Presenter: CHANG, SHIH-JIE Authors: Longzhuang Li, Yi Shang, Wei Zhang 2002.ACM. Improvement of HITS-based Algorithms.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A new data clustering approach- Generalized cellular automata.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. 1 Mining knowledge from natural language texts using fuzzy associated concept mapping Presenter : Wu,
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Direct mining of discriminative patterns for classifying.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. 1 Identifying Domain Expertise of Developers from Source Code Presenter : Wu, Jia-Hao Authors : Renuka.
Intelligent Database Systems Lab Presenter : Chuang, Kai-Ting Authors : Rafael Odon de Alencar, Clodoveu Augusto Davis Jr., Marcos André Gonçalves 2010,
Intelligent Database Systems Lab Presenter: NENG-KAI, HONG Authors: HUAN LONG A, ZIJUN ZHANG A, ⇑, YAN SU 2014, APPLIED ENERGY Analysis of daily solar.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Towards comprehensive support for organizational mining Presenter : Yu-hui Huang Authors : Minseok Song,
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Providing Justifications in Recommender Systems Presenter.
Intelligent Database Systems Lab Presenter: YU-TING LU Authors: Christopher C. Yang and Tobun Dorbin Ng TSMCA Analyzing and Visualizing Web Opinion.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Community self-Organizing Map and its Application to Data Extraction Presenter: Chun-Ping Wu Authors:
Intelligent Database Systems Lab Presenter: CHANG, SHIH-JIE Authors: Tao Liu, Zheng Chen, Benyu Zhang, Wei-ying Ma, Gongyi Wu 2004.ICDM. Improving Text.
Intelligent Database Systems Lab Presenter : JHOU, YU-LIANG Authors : Jae Hwa Lee, Aviv Segev 2012 CE Knowledge maps for e-learning.
Intelligent Database Systems Lab Presenter : CHANG, SHIH-JIE Authors : Andrés Ortiz, Juan M. Górriz, Javier Ramírez, F.J. Martínez-Murcia 2013.PRL LVQ-SVM.
Intelligent Database Systems Lab Presenter : Chang,Chun-Chih Authors : Emilio Corchado, Bruno Baruque 2012 NeurCom WeVoS-ViSOM: An ensemble summarization.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Visualizing social network concepts Presenter : Chun-Ping Wu Authors :Bin Zhu, Stephanie Watts, Hsinchun.
Intelligent Database Systems Lab Presenter : Chuang, Kai-Ting Authors : Rodrigo T. Peres, Claus Aranha, Carlos E. Pedreira 2013, InfSci Optimized bi-dimensional.
Intelligent Database Systems Lab Presenter : YU-TING LU Authors : Hsin-Chang Yang, Han-Wei Hsiao, Chung-Hong Lee IPM Multilingual document mining.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Named Entity Disambiguation by Leveraging Wikipedia Semantic Knowledge Presenter : Jiang-Shan Wang Authors.
Sentence Similarity Based on Semantic Nets and Corpus Statistics
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Enhancing Text Clustering by Leveraging Wikipedia Semantics.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Learning Portfolio Analysis and Mining for SCORM Compliant Environment Pattern Recognition (PR, 2010)
Intelligent Database Systems Lab Presenter : BEI-YI JIANG Authors : JAMAL A. NASIR, IRAKLIS VARLAMIS, ASIM KARIM, GEORGE TSATSARONIS KNOWLEDGE-BASED.
Intelligent Database Systems Lab Presenter: YU-TING LU Authors: Yong-Bin Kang, Pari Delir Haghighi, Frada Burstein ESA CFinder: An intelligent key.
Using lexical chains for keyword extraction
Presentation transcript:

Intelligent Database Systems Lab Presenter : Chang,Chun-Chih Authors : CHRISTOS BOURAS, VASSILIS TSOGKAS 2012, KBS A clustering technique for news articles using WordNet

Intelligent Database Systems Lab Outlines Motivation Objectives Methodology Experiments Conclusions Comments

Intelligent Database Systems Lab Motivation Document clustering is a powerful technique that has been widely. That some of the problems like synonymy, ambiguity and lack of a descriptive content marking of the generated clusters.

Intelligent Database Systems Lab Objectives We are proposing the enhancement of standard k- means algorithm using the external knowledge from WordNet hypernyms. The proposed method enabled significantly improves k-means generating also useful and high quality cluster.

Intelligent Database Systems Lab Methodology-Framework

Intelligent Database Systems Lab Methodology - Euclidian Distance & City-block Distance

Intelligent Database Systems Lab Methodology - Pearson

Intelligent Database Systems Lab Methodology - Cosine Distance

Intelligent Database Systems Lab Methodology - Spearman-rank Distance

Intelligent Database Systems Lab Methodology -Kendall Distance

Intelligent Database Systems Lab Methodology - Comparison of various methods Euclidian City-Block Cosine Kendall Spearman Pearson

Intelligent Database Systems Lab Methodology - heuristic function For Example for ‘fruit’ d=9, f=2 then W= For Example for ‘edible fruit’ d=7, f=1 then W=0.8915’ For Example for ‘food’ d=5, f=1 then W=0.6534

Intelligent Database Systems Lab Methodology - Enriching news articles using WordNet hypernyms

Intelligent Database Systems Lab Methodology - Labeling clusters using WordNet hypernyms

Intelligent Database Systems Lab Methodology - News article’s clustering using W-k means

Intelligent Database Systems Lab Experiments

Intelligent Database Systems Lab Experiments

Intelligent Database Systems Lab Experiments With WordNet use Without WordNet use → ←

Intelligent Database Systems Lab Experiments

Intelligent Database Systems Lab Experiments

Intelligent Database Systems Lab Experiments

Intelligent Database Systems Lab Conclusions From the plethora of similarity measures that have been used, the appliance of Euclidian and cosine k-means produced the best results. We have also presented a novel algorithmic approach towards enhancing the k-means algorithm using knowledge from an external database, WordNet.

Intelligent Database Systems Lab Comments Advantages -The resulting labels are with high precision Applications -News clustering -Cluster labeling