Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

Slides:



Advertisements
Similar presentations
Vorlesung Quantum Computing SS 08 1 A scalable system with well characterized qubits Long relevant decoherence times, much longer than the gate operation.
Advertisements

Gregynog QIP meeting QIP Experiments with ions, atoms and molecules Christopher Foot, University of Oxford
Quantum computing … Applications in informatics and physics P. Shor, 1994: factorization of large numbers is polynomial on a quantum computer, exponential.
Outlines Rabi Oscillations Properties of Rydberg atoms Van Der Waals Force and Rydberg Blockade The implementation of a CNOT gate Preparation of Engtanglement.
Guin-Dar Lin, Luming Duan University of Michigan 2009 March Meeting G.-D. Lin, S.-L. Zhu, R. Islam, K. Kim, M.-S. Chang, S. Korenblit, C. Monroe, L.-M.
Superconducting qubits
Quantum Computer Implementations
Trapped Ions and the Cluster State Paradigm of Quantum Computing Universität Ulm, 21 November 2005 Daniel F. V. JAMES Department of Physics, University.
1 Trey Porto Joint Quantum Institute NIST / University of Maryland University of Minnesota 26 March 2008 Controlled exchange interactions in a double-well.
Quantum computing hardware.
Scaling up a Josephson Junction Quantum Computer Basic elements of quantum computer have been demonstrated 4-5 qubit algorithms within reach 8-10 likely.
Generation of short pulses
Ultrafast Pulsed Laser Gates for Atomic Qubits J OINT Q UANTUM I NSTITUTE with David Hayes, David Hucul, Le Luo, Andrew Manning, Dzmitry Matsukevich, Peter.
Quantum Computing with Trapped Ion Hyperfine Qubits.
Pre-requisites for quantum computation Collection of two-state quantum systems (qubits) Operations which manipulate isolated qubits or pairs of qubits.
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
PBG CAVITY IN NV-DIAMOND FOR QUANTUM COMPUTING Team: John-Kwong Lee (Grad Student) Dr. Renu Tripathi (Post-Doc) Dr. Gaur Pati (Post-Doc) Supported By:
Quantum Information Processing with Trapped Ions E. Knill C. Langer D. Leibfried R. Reichle S. Seidelin T. Schaetz D. J. Wineland NIST-Boulder Ion QC group.

Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 5.
Single-ion Quantum Lock-in Amplifier
“Quantum computation with quantum dots and terahertz cavity quantum electrodynamics” Sherwin, et al. Phys. Rev A. 60, 3508 (1999) Norm Moulton LPS.
Cavity QED as a Deterministic Photon Source Gary Howell Feb. 9, 2007.
UNIVERSITY OF NOTRE DAME Xiangning Luo EE 698A Department of Electrical Engineering, University of Notre Dame Superconducting Devices for Quantum Computation.
Quantum Computing with Entangled Ions and Photons Boris Blinov University of Washington 28 June 2010 Seattle.
Quantum computing hardware aka Experimental Aspects of Quantum Computation PHYS 576.
Quantum Computation Using Optical Lattices Ben Zaks Victor Acosta Physics 191 Prof. Whaley UC-Berkeley.
Jan W. Thomsen, G. K. Campbell, A. D. Ludlow, S. Blatt, M. Swallows, T. Zelevinsky, M. M. Boyd, M. Martin, T. Nicholson and J. Ye JILA, NIST and University.
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
Coherence in Spontaneous Emission Creston Herold July 8, 2013 JQI Summer School (1 st annual!)
18 56 Quantum Information Science: A Second Quantum Revolution Christopher Monroe Joint Quantum Institute University of Maryland Department.
Spin-motion coupling in atoms Cooling to motional ground states and Quantum logic spectroscopy.
of 34 Atomic Ions in Penning Traps for Quantum Information Processing Danny Segal QOLS Group, Blackett Laboratory. Current group members: R.
Interfacing quantum optical and solid state qubits Cambridge, Sept 2004 Lin Tian Universität Innsbruck Motivation: ion trap quantum computing; future roads.
Quantum Devices (or, How to Build Your Own Quantum Computer)
Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler.
Generation of Mesoscopic Superpositions of Two Squeezed States of Motion for A Trapped Ion Shih-Chuan Gou ( 郭西川 ) Department of Physics National Changhua.
Trapped Atomic Ions II Scaling the Ion Trap Quantum Computer Christopher Monroe FOCUS Center & Department of Physics University of Michigan.
Quantum computing with Rydberg atoms Klaus Mølmer Coherence school Pisa, September 2012.
Des horloges atomiques pour LISA ? Pierre Lemonde Bureau National de Métrologie – SYRTE (UMR CNRS 8630) Observatoire de Paris, France Journées LISA-FRANCE.
DEPARTMENT OF PHYSICS UNIVERSITY OF TORONTO, 60 ST. GEORGE STREET, TORONTO, ONTARIO, CANADA M5S 1A7 1/22 Whither Quantum Computing? 2007 CQCT ANNUAL WORKSHOP.
Jian-Wei Pan Decoherence-free sub-space and quantum error-rejection Jian-Wei Pan Lecture Note 7.
Quantum Computing with Trapped Atomic Ions
A deterministic source of entangled photons David Vitali, Giacomo Ciaramicoli, and Paolo Tombesi Dip. di Matematica e Fisica and Unità INFM, Università.
1. FOCUS and MCTP, Department of Physics, University of Michigan, Ann Arbor, Michigan LQIT and ICMP, Department of Physics, South China Normal.
Single atom manipulations Benoît Darquié, Silvia Bergamini, Junxiang Zhang, Antoine Browaeys and Philippe Grangier Laboratoire Charles Fabry de l'Institut.
Copenhagen interpretation Entanglement - qubits 2 quantum coins 2 spins ( spin “up” or spin “down”) Entangled state many qubits: Entangled state:
Quantum Computation With Trapped Ions Brian Fields.
The Theory of Effective Hamiltonians for Detuned Systems
Laser Cooling and Trapping Magneto-Optical Traps (MOTs) Far Off Resonant Traps (FORTs) Nicholas Proite.
Pablo Barberis Blostein y Marc Bienert
Large scale quantum computing in silicon with imprecise qubit couplings ArXiv : (2015)
Фото MANIPULATING THE QUANTUM STATE OF SINGLE ATOMS AND PHOTONS works of Nobel Laureates in physics 2012 A.V.Masalov Lebedev Physics Institute, RAS, Moscow.
Mesoscopic Physics Introduction Prof. I.V.Krive lecture presentation Address: Svobody Sq. 4, 61022, Kharkiv, Ukraine, Rooms. 5-46, 7-36, Phone: +38(057)707.
Imperial College London Robust Cooling of trapped particles J. Cerrillo-Moreno, A. Retzker and M.B. Plenio (Imperial College) Olomouc Feynman Festival.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
An Introduction to Quantum Computation Sandy Irani Department of Computer Science University of California, Irvine.
1/30 University of Toronto, 28 March 2005 Quantum Information Processing with Atoms and Light Daniel F. V. James Group T-4, Los Alamos National Lab University.
Christopher Monroe Joint Quantum Institute and Department of Physics NIST and University of Maryland Quantum Computation and Simulation.
TC, U. Dorner, P. Zoller C. Williams, P. Julienne
Preparing antihydrogen at rest for the free fall in
Ion Trap Quantum Computing and Teleportation
Coupled atom-cavity system
University of Oxford, U.K.*
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Cavity QED
Guin-Dar Lin, Luming Duan University of Michigan 2009 DAMOP Meeting
Humboldt Kolleg, Vilnius
Norm Moulton LPS 15 October, 1999
Presentation transcript:

Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad) Daniel Stick (grad) US Advanced Research and Development Activity US Army Research Office US National Security Agency National Science Foundation FOCUS FOCUS Center Boris Blinov (postdoc) Paul Haljan (postdoc) Winfried Hensinger (postdoc) Chitra Rangan (postdoc/theory – to U. Windsor) Luming Duan (Prof., UM) Jim Rabchuk (Visiting Prof., West. Illinois Univ.) David Hucul (undergrad) Rudy Kohn (undergrad) Mark Yeo (undergrad) NSF

Trapped Atomic Ions I Quantum computing and motional quantum gates Christopher Monroe FOCUS Center & Department of Physics University of Michigan

“When we get to the very, very small world – say circuits of seven atoms - we have a lot of new things that would happen that represent completely new opportunities for design. Atoms on a small scale behave like nothing on a large scale, for they satisfy the laws of quantum mechanics…” “There's Plenty of Room at the Bottom” (1959 APS annual meeting) Richard Feynman

A quantum computer hosts quantum bits that can store superpositions of 0 and 1 classical bit: 0 or 1 quantum bit: |0 + |1 Benioff (1980) Feynman (1982) examples of “qubits”: N S N S h V H atoms particle spins photons

GOOD NEWS… quantum parallel processing on 2 N inputs Example: N=3 qubits  =a 0 |000  + a 1 |001  + a 2 |010  + a 3 |011  a 4 |100  + a 5 |101  + a 6 |110  + a 7 |111  f(x) …BAD NEWS… Measurement gives random result e.g.,   |101  f(x)

depends on all inputs quantum logic gates |0 |0  |0 |0 |0 |1  |0 |1 |1 |0  |1 |1 |1 |1  |1 |0 e.g., (|0 + |1)|0  |0|0 + |1|1 quantum XOR gate: superposition  entanglement |0  |0 + |1 |1  |1  |0 quantum NOT gate: …GOOD NEWS! quantum interference

Key resource: Quantum Entanglement not just a “choice of basis” e.g.   vs. |0,0 must be able to access subsystems individually (see Bell )  = ( + )( + ) Contrast = 2 || = 0.5 (  i )(  i )  = or (  i )(  i ) … Contrast = 2 || = 0.5  =  +  Contrast = 2 || = 1 not hard to qualify (entanglement thresholds) ideal:

 1 = | + |  2 = | + | + | + | + | + | very hard to quantify (esp. mixed states) Classical Information:S(AB)  S(A) + S(B) Quantum Information:S(AB) < S(A) + S(B) possible! Information Entropy

Quantum computer hardware requirements 1.Must make states like |000…0 + |111…1 2. Must measure state with high efficiency strong coupling to environment strong coupling between qubits weak coupling to environment x x + see E. Schrödinger (1935)

N qubits controlled coupling … to >99% accuracy * * provided things have been done right Quantum Information and Atomic Physics

0.3 mm 199 Hg + J. Bergquist, NIST Aarhus Boulder (NIST) Munich (MPQ) Hamburg Innsbruck Los Alamos McMaster Michigan Oxford Teddington (NPL) Ion Trap QC Groups: Trapped Atomic Ions J. Bergquist (NIST) | | qubit stored inside each trapped ion

2 Cd + ions

S P D |  |  Ca +, Sr +, Ba +, Yb + optical (10 15 Hz) 1 sec Energy Atomic Ion Internal Energy Levels (think: HYDROGEN) S P |  |  Be +, Mg +, Hg +, Cd +, Zn + microwave (10 10 Hz)  hyperfine qubit levels

State | NSNS NSNS Hyperfine Structure: States of relative electron/nuclear spin State | SNSN NSNS

111 Cd + atomic structure 1,1 1,0 1,-1 0,0 =215nm 2 S 1/2 2 P 3/2 2,2 2, GHz | | magnetic insensitive qubit (to 2 nd order)   (400 Hz/G 2 )·B·B   ( Hz/G)·B

1,1 1,0 1,-1 0,0 =215nm 2 S 1/2 2 P 3/2 2,2 2, GHz | | /2 = 50 MHz “bright” # photons collected in 100 s Probability 111 Cd + qubit measurement

1,1 1,0 1,-1 0,0 =215nm 2 S 1/2 2 P 3/2 2,2 2, GHz | | /2 = 50 MHz 99.7% detection efficiency “dark” Probability # photons collected in 100 s Cd + qubit measurement

1,1 1,0 1,-1 0,0 =215nm 2 S 1/2 2 P 3/2 2,2 2, GHz | | 111 Cd + qubit manipulation: microwaves microwaves coupling rate: g 

Time  (ms) Time (ms) ,1 1,0 1,-1 0,0 1,1 1,0 1,-1 0,0 Microwave Rabi Flopping Prob(10|00) Prob(11|00) prepare 00  waves measure fluorescence (bright or dark) :: sweep  g   10  100kHz

 (  s) prepare 00  waves measure fluorescence (bright or dark) :: increment  “Single shot” Rabi Flopping Prob(10|00)

Time (ms) Time (ms) ,1 1,0 1,-1 0,0 1,1 1,0 1,-1 0,0 Microwave Ramsey Inteferometry Prob( | ) prepare 00  waves measure fluorescence :: sweep  /2

1,1 1,0 1,-1 0,0 =215nm 2 S 1/2 2 P 3/2 2,2 2, GHz | | /2 = 50 MHz 111 Cd + qubit manipulation: optical Raman transitions /2  THz  coherent coupling rate (good): g R = g 1 g 2 /  direct coupling to P (bad): R dec =  g 1 g 2 /   want small  (but < FS !)

0.3 mm J. Bergquist, NIST

Thanks: R. Blatt, Univ. Innsbruck 40 Ca +

logical |0 m logical |1 m Another Qubit: The quantized motion of a single mode of oscillation  harmonic motion of a collective single mode described by quantum states |n  m = |0  m, |1  m, |2  m,..., where E = ħ  (n+½) PHONONS: FORMALLY EQUIVALENT TO PHOTONS  motional “data-bus” quantum bit spans|n  m = |0  m and |1  m 0 1 2

Coupling (internal) qubits to (external) bus qubit radiation tuned to  0  || || || || || || || || || || || || |1  m |0  m |1  m |0  m

S 1/2 P 3/2 | | excitation on 1 st lower (“red”) motional sideband (n=0)  ~ few MHz

S 1/2 P 3/2 | | excitation on 1 st lower (“red”) motional sideband (n=0)

Mapping: (  |  +  |  ) |0  m  |  (  |0  m +  |1  m ) S 1/2 P 3/2 |  |  S 1/2 P 3/2 |  | 

Mapping: (  |  +  |  ) |0  m  |  (  |0  m +  |1  m ) S 1/2 P 3/2 |  |  S 1/2 P 3/2 |  | 

Spin-motion coupling: some math interaction frame; “rotating wave approximation”  =  L  0 = detuning k = 2  = wavenumber x0x0 frequency of applied radiation

stationary terms arise in H at particular values of  “Lamb-Dicke Limit” ,n|H 0 | ,n  = ħg  = 0 “CARRIER” ,n  1|H 0 | ,n  = ħg  = +  “1 ST BLUE SIDEBAND” ,n  1|H +1 | ,n  = ħg  =  “1 ST RED SIDEBAND”

Doppler Cooling Raman spectrum of single 111 Cd + ion (start in |) | | n= PP “Red” Sideband |,n  |,n+1 “Blue” sideband |,n  |,n-1  (MHz) sideband strengths: thermal occupation distribution Thermometry: n  6

n | | Raman Sideband Laser-Cooling. n1n1. n1n1 | | n1n1 stimulated Raman ~-pulse on blue sideband spontaneous Raman recycling.. n=-1 n   recoil / trap << 1

Doppler Cooling Raman spectrum of single 111 Cd + ion (3.6 MHz trap) | | n=0 L. Deslauriers et al., Phys. Rev. A 70, (2004) Doppler + Raman Cooling | | n=0 PP n < PP “Red” Sideband |,n  |,n+1 “Blue” sideband |,n  |,n-1 n   (MHz) x 0 ~3 nm

Heating of a single Cd + ion from n0 Delay Time (msec) nn Trap Frequency (MHz) Heating rate dn/dt (quanta/msec) Quadrupole Trap (160  m to nearest electrode) Linear Trap (100  m to nearest electrode) Heating Rate dn/dt (quanta/msec) Decoherence of Trapped Ion Motion

40 Ca Hg Cd + Heating history in 3-6 MHz traps 9 Be + Distance to nearest trap electrode [mm] Ba + heating rate (quanta/msec) 137 Ba + IBM-Almaden (2002) 40 Ca + Innsbruck (1999) 199 Hg + NIST (1989) 9 Be + NIST (1995-) 111 Cd + Michigan (2003) Q. Turchette, et. al., Phys. Rev. A 61, (2000) L. Deslauriers et al., Phys. Rev. A 70, (2004)

Trap dimension [mm] S E (  )  (V/m) 2 /Hz 40 Ca Hg Cd Ba + 9 Be + 1/d 4 guide-to-eye Electric Field Noise History in 3-6 MHz traps ~ 1/d 4 Heating due to fluctuating patch potentials (?) d est. thermal noise

Quantum Gate Schemes for Trapped Ions 1. Cirac-Zoller 2. Mølmer-Sørensen 3. Fast Impulsive Gates

Universal Quantum Logic Gates with Trapped Ions Step 1 Laser cool collective motion to rest Cirac and Zoller, Phys. Rev. Lett. 74, 4091 (1995) n=0

Universal Quantum Logic Gates with Trapped Ions laser j k Step 2 Map j th qubit to collective motion Cirac and Zoller, Phys. Rev. Lett. 74, 4091 (1995)

Universal Quantum Logic Gates with Trapped Ions laser j k Step 3 Flip k th qubit depending upon motion Cirac and Zoller, Phys. Rev. Lett. 74, 4091 (1995) |  |  /2, 2, /2 sign flip |  |n=1  only ! 22 /2

Universal Quantum Logic Gates with Trapped Ions laser j k Step 4 Remap collective motion to j th qubit (reverse of Step 1) Cirac and Zoller, Phys. Rev. Lett. 74, 4091 (1995) Net result: [| j + | j ] | k  | j | k + | j | k n=0

CNOT between motion and spin (1 ion): F=85% C.M., et. al., Phys. Rev. Lett. 75, 4714 (1995) CNOT between spins of 2 ions: F=71% F. Schmidt-Kaler, et. al., Nature 422, (2003). Demonstrations of Cirac-Zoller CNOT Gate

 =  m +  m During the gate (at some point), the state of an ion qubit and motional bus state is: Decoherence Kills the Cat

Direct coupling between | and | with bichromatic excitation ? uniform illumination |  + e i  |  22 |  |   g 2  +  = Rabi Freq= = 0 g 2 

Bichromatic coupling to sidebands uniform illumination | , |    |  |  n1n1 n n+1 n n  Mølmer/Sørensen Milburn/Schneider/James (1999)  kx 0 g  n+1) 2   kx 0 g  n) 2  +  = Rabi Freq= =  kx 0 g) 2   as long as kx 0  n+1<< 1: “Lamb-Dicke regime”) independent of motion !

Mølmer/Sørensen 2-ion entangling quantum gate – a “super” /2-pulse Big improvement – no focussing required no n=0 cooling required less sensitive to heating || |  |  | n1n1 n n+1 n n n1n1 n

Can scalable to arbitrary N! |  ···   |  ···  + |  ···  22 e.g., 6 ions |3,-3  = |  |3,3  = |  |3,-1  = |  + ··· |3,1  = |  + ··· | J,J z   Coupling: H =  J x 2 flips all pairs of spins  Entangling rate  N -1/2

Four-qubit quantum logic gate Sackett, et al., Nature 404, 256 (2000) |   |  + e i  | 

x p N=1 ion: Force = F 0 || (spin-dependent force) Same idea in a different basis     e i   (  enclosed area) laser N=2 ions     e i     e i     e.g., force on stretch mode only = /2: -phase gate NIST (2003): 97% Fidelity

Strong Field Impulsive Gates 2 S 1/2 2 P 1/2 | |  ++ 0,0 1,1 1,0 1,-1 0,0 1,1 1,0 1,-1 e.g. 111 Cd GHz strong coupling:  Rabi  >> and  Rabi ~ 1 (a)off-resonant laser pulse; differential AC Stark shift provides qubit-state-dependent impulse

|   |  = |  ’  ’  k = linear shift f = nonlinear shift = 2U dd t /ħ ++ d d ++ “dipole engineering”: U dd = m 1 m 2 /r 3 = (e d ) 2 /r 3 r |   e +i k -i f /2 |  = |  ’  ’  |   e -i k -i f /2 |  = |  ’  ’  |   |  = e i f |  ’  ’  quantum phase gate  (t) t sub s       Cirac & Zoller (2000)

Poyatos, Cirac, Blatt & Zoller, PRA 54, 1532 (1996) Garcia-Ripoll, Zoller, & Cirac, PRL 91, (2003)  p = 2ħk || ||  |e   U = || e 2i  a  a  † | | |e|e | | |e|e -pulse up -pulse down two sequential -pulses spin-dependent impulse (b) resonant ultrafast kicks

The trajectory of a normal motional mode of two ions in phase space under the influence of four photon kicks. Gray curve: free evolution. Black curve: four impulses kick the trajectory in phase space, with an ultimate return to the free trajectory after ~1.08 revolutions.

2 S 1/2 2 P 1/2 | | ++ 0,0 1,1 1,0 1,-1 =226.5 nm 10 psec no kick 2 P 3/2 1/(15 fsec) = FS splitting  e  3nsec |e|e Fast version of  z phase gate does not require Lamb-Dicke regime! e.g. 111 Cd + require  FS <<  pulse <<  e

Summary Trapped Ions satisfy all “DiVincenzo requirements” for quantum computing: 1. identifiable qubits 2. efficient initialization 3. efficient measurement 4. universal gates 5. small decoherence SO WHAT’S THE PROBLEM?!

ENIAC (1946)

Next: Ion Traps and how to scale them!