1 EE 044125 התקני מוליכים למחצה פרק 12 טרנזיסטור MOS פרופ' אבינעם קולודני.

Slides:



Advertisements
Similar presentations
Lecture Metal-Oxide-Semiconductor (MOS) Field-Effect Transistors (FET) MOSFET Introduction 1.
Advertisements

Goals Investigate circuits that bias transistors into different operating regions. Two Supplies Biasing Four Resistor Biasing Two Resistor Biasing Biasing.
ECA1212 Introduction to Electrical & Electronics Engineering Chapter 6: Field Effect Transistor by Muhazam Mustapha, October 2011.
Field Effect Transistor characteristics
Metal-Oxide-Semiconductor Fields Effect Transistors (MOSFETs) From Prof. J. Hopwood.
University of Toronto ECE530 Analog Electronics Review of MOSFET Device Modeling Lecture 2 # 1 Review of MOSFET Device Modeling.
Digital Integrated Circuits© Prentice Hall 1995 Devices Jan M. Rabaey The Devices.
Chapter 6 The Field Effect Transistor
NAME OF FACULTY : MR. Harekrushna Avaiya DEPARTMENT: E.C. (PPI-1ST) BASIC ELECTRONICS.
Lecture 11: MOS Transistor
10/8/2004EE 42 fall 2004 lecture 171 Lecture #17 MOS transistors MIDTERM coming up a week from Monday (October 18 th ) Next Week: Review, examples, circuits.
© Digital Integrated Circuits 2nd Devices Digital Integrated Circuits A Design Perspective The Devices Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic.
EE415 VLSI Design The Devices: MOS Transistor [Adapted from Rabaey’s Digital Integrated Circuits, ©2002, J. Rabaey et al.]
Lecture #16 OUTLINE Diode analysis and applications continued
(N-Channel Metal Oxide Semiconductor)
The metal-oxide field-effect transistor (MOSFET)
ECD 442 Power Electronics1 Power MOSFETs Two Types –Depletion Type Channel region is already diffused between the Drain and Source Deplete, or “pinch-off”
Digital Integrated Circuits A Design Perspective
Reading: Finish Chapter 6
Week 8b OUTLINE Using pn-diodes to isolate transistors in an IC
Chap. 5 Field-effect transistors (FET) Importance for LSI/VLSI –Low fabrication cost –Small size –Low power consumption Applications –Microprocessors –Memories.
Spring 2007EE130 Lecture 38, Slide 1 Lecture #38 OUTLINE The MOSFET: Bulk-charge theory Body effect parameter Channel length modulation parameter PMOSFET.
Microelectronics Circuit Analysis and Design Donald A. Neamen
Chapter Five The Field-Effect Transistor. Figure 6—2 A three-terminal nonlinear device that can be controlled by the voltage at the third terminal v.
EE105 Fall 2007Lecture 16, Slide 1Prof. Liu, UC Berkeley Lecture 16 OUTLINE MOS capacitor (cont’d) – Effect of channel-to-body bias – Small-signal capacitance.
EE314 IBM/Motorola Power PC620 IBM Power PC 601 Motorola MC68020 Field Effect Transistors.
© Digital Integrated Circuits 2nd Devices VLSI Devices  Intuitive understanding of device operation  Fundamental analytic models  Manual Models  Spice.
Metal-Oxide-Semiconductor Field Effect Transistors
Lecture 19 OUTLINE The MOSFET: Structure and operation
Types of MOSFETs ECE 2204.
Introduction to FET’s Current Controlled vs Voltage Controlled Devices.
© 2012 Eric Pop, UIUCECE 340: Semiconductor Electronics ECE 340 Lecture 35 MOS Field-Effect Transistor (MOSFET) The MOSFET is an MOS capacitor with Source/Drain.
Digital Integrated Circuits© Prentice Hall 1995 Introduction The Devices.
Qualitative Discussion of MOS Transistors. Big Picture ES220 (Electric Circuits) – R, L, C, transformer, op-amp ES230 (Electronics I) – Diodes – BJT –
ECE 342 Electronic Circuits 2. MOS Transistors
NOTICES Project proposal due now Format is on schedule page
© Digital Integrated Circuits 2nd Devices Digital Integrated Circuits A Design Perspective The Devices Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic.
The Devices Digital Integrated Circuit Design Andrea Bonfanti DEIB
© Digital Integrated Circuits 2nd Devices Digital Integrated Circuits A Design Perspective The Devices Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic.
Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction.
Introduction to Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) Chapter 7, Anderson and Anderson.
Chapter 5: Field Effect Transistor
1 Metal-Oxide-Semicondutor FET (MOSFET) Copyright  2004 by Oxford University Press, Inc. 2 Figure 4.1 Physical structure of the enhancement-type NMOS.
Qualitative Discussion of MOS Transistors. Big Picture ES230 – Diodes – BJT – Op-Amps ES330 – Applications of Op-Amps – CMOS Analog applications Digital.
Chapter 4 Field-Effect Transistors
DMT121 – ELECTRONIC DEVICES
1 Fundamentals of Microelectronics  CH1 Why Microelectronics?  CH2 Basic Physics of Semiconductors  CH3 Diode Circuits  CH4 Physics of Bipolar Transistors.
ECE340 ELECTRONICS I MOSFET TRANSISTORS AND AMPLIFIERS.
Short Channel Effects in MOSFET
Junction Capacitances The n + regions forms a number of planar pn-junctions with the surrounding p-type substrate numbered 1-5 on the diagram. Planar junctions.
EE141 © Digital Integrated Circuits 2nd Devices 1 Digital Integrated Circuits A Design Perspective The Devices Jan M. Rabaey Anantha Chandrakasan Borivoje.
Digital Integrated Circuits© Prentice Hall 1995 Devices Jan M. Rabaey The Devices.
UNIT I MOS TRANSISTOR THEORY AND PROCESS TECHNOLOGY
Chapter 12 : Field – Effect Transistors 12-1 NMOS and PMOS transistors 12-2 Load-line analysis of a simple NMOS amplifier 12-3 Small –signal equivalent.
ISAT 436 Micro-/Nanofabrication and Applications Transistors David J. Lawrence Spring 2004.
EE141 © Digital Integrated Circuits 2nd Devices 1 Lecture 5. CMOS Device (cont.) ECE 407/507.
MOSFET Structure p-Si n+ L Source Gate Drain Field Oxide Gate Oxide
CMOS VLSI Design CMOS Transistor Theory
1 Figure 4.10 (a) Circuit symbol for the n-channel enhancement-type MOSFET. (b) Modified circuit symbol with an arrowhead on the source terminal to distinguish.
Junction Field Effect Transistor
EE141 © Digital Integrated Circuits 2nd Devices 1 Digital Integrated Circuits A Design Perspective The Devices Jan M. Rabaey Anantha Chandrakasan Borivoje.
Animation of the MOSFET manufacturing process I encourage you to look at the website given below and use the button “animate to next” – the actual process.
Field Effect Transistor (FET)
Transistors (MOSFETs)
EE 466/586 VLSI Design Partha Pande School of EECS Washington State University
CHAPTER 5 FIELD EFFECT TRANSISTORS(part a) (FETs).
The MOS capacitor. (a) Physical structure of an n+-Si/SiO2/p-Si MOS capacitor, and (b) cross section (c) The energy band diagram under charge neutrality.
Damu, 2008EGE535 Fall 08, Lecture 21 EGE535 Low Power VLSI Design Lecture #2 MOSFET Basics.
Drain VDVD Source VSVS P NN W L Vg G S D B. P NN SourceDrain VDVD VSVS טרנזיסטור MOS Vg.
6.3.3 Short Channel Effects When the channel length is small (less than 1m), high field effect must be considered. For Si, a better approximation of field-dependent.
Presentation transcript:

1 EE התקני מוליכים למחצה פרק 12 טרנזיסטור MOS פרופ' אבינעם קולודני

2 EE טרנזיסטור MOS: הרעיון P NN SourceDrain VDVD VSVS +Vg נקרא גם FET או MOSFET (Field Effect Transistor)  למדנו קודם:  קבל MOS  נלמד עכשיו:  קבל MOS משולב עם שתי דיודות. זהו טרנזיסטור!

3 EE תזכורת: צומת בממתח הפוך כמבודד NN 0V +V 1 +V 2 P-type

4 EE מבנה תלת ממדי וסמל סכמטי Drain VDVD Source VSVS P NN W L Vg G D B S

5 EE מבט מלמעלה וחתך בטרנזיסטור MOS W L NN SourceDrain VDVD VSVS Gate L

6 EE Field-effect transistor patent (Lilienfeld 1928)

7 EE לב הטרנזיסטור הוא קבל MOS Gate Voltage V g Gate Charge Q g Total -Q inv -Q dep VTVT Metal Oxide P-type Semiconductor Vg

8 EE חישוב הזרם בטרנזיסטור MOS P NN SourceDrain VDVD VSVS +Vg

9 EE קיבלנו קשר לינארי G S D B I DS V DS Trans-Resistor = Transistor

10 EE חישוב קצת יותר מדויק של הזרם

11 EE חישוב ע"י אינטגרציה (אותה תוצאה)

12 EE אפייני זרם-מתח של טרנזיסטור G S D B V GS

13 EE תופעת הרוויה בזרם הטרנזיסטור

14 EE השתנות עובי שכבת המיחסור

15 EE "תופעת הצביטה" (pinch-off) Linear region Strong Saturation Onset of saturation

16 EE תחום אומי ("לינארי") Schematic view of an n-channel under bias below pinch-off.

17 EE תחום רוויה

18 EE סדרת ציורים של פתרון פוטנציאל דו-ממדי  המקור: S. Dimitrijev, “ Interactive MATLAB Animations forUnderstanding Semiconductor Devices”  ההתקן:  גובה פס ההולכה מוצג ע"י עצמת צבע אדום, וגם כמשטח מעל מישור x-y 0 Volts VgVg VdVd x y

19 EE Vg=0 Vd=0.4

20 EE Vg=V FB Vd=0.4

21 EE Vg=1 Vd=0.4

22 EE Vg=2 Vd=0.4

23 EE Vg=3 Vd=0.4

24 EE Vg=4 Vd=0.4

25 EE Vg=5 Vd=0.4

26 EE Vg=0 Vd=2.0

27 EE Vg=V FB Vd=2.0

28 EE Vg=1 Vd=2.0

29 EE Vg=2 Vd=2.0

30 EE Vg=3 Vd=2.0

31 EE Vg=4 Vd=2.0

32 EE Vg=5 Vd=2.0

33 EE Vg=3 Vd=5

34 EE מהלך פסי אנרגיה ליד פני השטח

35 EE תחומי הפעולה של הטרנזיסטור: קטעון, אוהמי (לינארי), רוויה G S D B V GS x V DS (V) I D (A) VGS= 2.5 V VGS= 2.0 V VGS= 1.5 V VGS= 1.0 V ResistiveSaturation V DS = V GS - V T

36 EE MOSFET Analogy: Cutoff region (V g <V T ) “source” “drain” No water flow because of the barrier “gate”

37 EE MOSFET Analogy: Linear region Strong inversion everywhere (V g >>V T ) Higher V g means lower barrier; Water flows down to the drain “source” “drain” “gate”

38 EE MOSFET Analogy: Still in Linear region V d is a little higher, but still strong inversion everywhere “source” “drain” This means deeper drain; Stronger water flow “gate” Previous Vd level

39 EE MOSFET Analogy: saturation region (V d =v g -V T ) Weak inversion near the drain “source” “drain” Even deeper drain: more current; This is the edge of saturation “gate”

40 EE MOSFET Analogy: deeper saturation (V d >v g -V T ) “source” “drain” “Waterfall” formed; Water current flow cannot grow further; It is saturated and independent of V d “gate”

41 EE סיכום מודל הזרם בטרנזיסטור MOS

42 EE P NN SourceDrain VDVD VSVS Vg N-MOS Channel=N N PP SourceDrain VDVD VSVS Vg P-MOS Channel=P G S D B G S D B Source of Electrons Source of Holes

43 EE אפייני NMOS בהשוואה ל- PMOS (a)n-channel. V D, V G, V T, and I D are positive; (b)p-channel. All quantities negative.

44 EE MOS transistors Types and Symbols D S G D S G G S D NMOS Enhancement NMOS PMOS Depletion (V T <0) Enhancement S G D B S G D B

45 EE Cross-Section of CMOS Technology

46 EE מודל לאות קטן

47 EE Transfer characteristics (Linear region)

48 EE Transfer characteristics (Saturation region)

49 EE אפקט המצע body effect

50 EE אפקטים בהתקנים קטנים (short channel effects) -4 V DS (V) x 10 I D (A) VGS= 2.5 V VGS= 2.0 V VGS= 1.5 V VGS= 1.0 V x V DS (V) I D (A) VGS= 2.5 V VGS= 2.0 V VGS= 1.5 V VGS= 1.0 V ResistiveSaturation V DS = V GS - V T Long ChannelShort Channel

51 EE "אפקט התקצרות התעלה"

52 EE Threshold Variations V ds

53 EE Velocity Saturation

54 EE Sub-Threshold Conduction

55 EE MOSFET – Equivalent Circuit

56 EE קיבול השער של הטרנזיסטור

57 EE Source/Drain junction Capacitances

58 EE Parasitic Resistances

59 EE סיכום

60 EE