MADISON’S CURRENT WEATHER Madison Weather at 1000 AM CDT 27 JUN 2002 Updated twice an hour at :05 and :25 Temperature: 72F ( 22C) Dewpoint: 59F ( 15C) Relative Humidity: 64% Winds from the NW (330 degs) at 10 mph. Pressure: millibars. Altimeter:29.88 inches of mercury. The prevailing visibility was 10 miles.
ATM OCN 100 Summer
3 CURRENT VISIBLE
ATM OCN 100 Summer Current Surface Weather Map with Isobars (“iso” = equal & “bar” = weight), Fronts and Radar
ATM OCN 100 Summer Current Surface Winds with Streamlines & Isotachs (“iso” = equal & “tach” = speed) H L L H H L L
ATM OCN 100 Summer Yesterday’s High Temperatures ( o F) – ( ) Average High Temperatures
ATM OCN 100 Summer Current Temperatures ( ° F) & Isotherms (“iso” = equal +”therm” = temperature)
ATM OCN 100 Summer Current Temperatures ( o F) – 24 Hrs Ago
ATM OCN 100 Summer CURRENT IR
ATM OCN 100 Summer Current Dewpoints ( o F)
ATM OCN 100 Summer Current UVI Forecast
ATM OCN 100 Summer Tomorrow AM Forecast Map
ATM OCN 100 Summer ANNOUCEMENTS u Homework #1 is graded & returned today – –See Ans. Key at u Homework #2 is due Wed. u 1 st Hour Exam is scheduled for Wed. –See Study sheet at
ATM OCN 100 Summer ATM OCN Summer 2001 LECTURE 7 ATMOSPHERIC ENERGETICS: RADIATION (con’t.) u A. Introduction u B. Radiant Energy - Fundamentals
ATM OCN 100 Summer Electromagnetic Radiation Fundamentals
ATM OCN 100 Summer Electromagnetic Radiation Emission/Absorption as a function of Temperature Total radiation emitted/absorbed T 4 Peak emission wavelength 1/T
ATM OCN 100 Summer ELECTROMAGNETIC RADIATION FUNDAMENTALS (con’t.) u Inverse Square Relationship –Intensity of incident radiation varies inversely with square of distance from radiation source;
ATM OCN 100 Summer ELECTROMAGNETIC RADIATION FUNDAMENTALS (con’t.) u Inverse Square Relationship –Intensity of incident radiation varies inversely with square of distance from radiation source;
ATM OCN 100 Summer INVERSE SQUARE LAW (con’t.)
ATM OCN 100 Summer INVERSE SQUARE LAW (con’t.) Earth
ATM OCN 100 Summer ELECTROMAGNETIC RADIATION FUNDAMENTALS (con’t.) u Zenith Angle Relationship –Intensity of incoming radiation is: F greatest for vertically oriented rays; F least for rays that parallel horizontal surface. –Intensity of incoming radiation is proportional to cosine of incident angle (defined as zenith angle)
ATM OCN 100 Summer COSINE ANGLE RELATIONSHIP (con’t.) Sun at zenith Sun on horizon
ATM OCN 100 Summer Solar Altitude Angles at Different Latitudes Fig. 2.6 Moran and Morgan (1997)
ATM OCN 100 Summer C. THE EARTH, THE SUN and THE RADIATION LINK u The Sun & Solar radiation –A star with surface temperature 6000 K; –Peak radiation m.
ATM OCN 100 Summer Our Sun [Space Environment Center]
ATM OCN 100 Summer Our Sun last Night [NOAA Space Environment Center] H-Alpha Image
ATM OCN 100 Summer Our Sun from Yesterday [Space Environment Center] H-Alpha Image Helium Image
ATM OCN 100 Summer Sunspot Numbers Fig 20.5 Moran & Morgan (1997)
ATM OCN 100 Summer Extra-atmospheric Solar Radiation See Fig 2.3, Moran & Morgan (1997)
ATM OCN 100 Summer C. THE EARTH, THE SUN & THE RADIATION LINK (con’t.) u Receipt of solar radiation by Earth- atmosphere system –Solar Constant Incoming solar radiation received on surface that is: F Perpendicular to sun’s rays F Above atmosphere; F at mean earth-sun distance. –Currently accepted value: 2 cal/cm 2 /min = 1370 Watt/m 2.
ATM OCN 100 Summer INVERSE SQUARE LAW (con’t.) Earth
ATM OCN 100 Summer C. THE EARTH, THE SUN & THE RADIATION LINK (con’t.) u Our place in the Sun -- Annual & diurnal motions of Earth –Solstices & equinoxes –Local noon & sunrise/sunset
ATM OCN 100 Summer Earth’s Orbit of Sun – The Cause of the Seasons See Fig Moran & Morgan (1997)
ATM OCN 100 Summer Earth’s Orbit of Sun – The Cause of the Seasons See Fig Moran & Morgan (1997)
ATM OCN 100 Summer DAYLIGHT-NIGHT (23 JUN)
ATM OCN 100 Summer DAYLIGHT-NIGHT (21 SEP)
ATM OCN 100 Summer DAYLIGHT-NIGHT (22 DEC)
ATM OCN 100 Summer Latitudinal Dependency
ATM OCN 100 Summer Solar Altitude Angles at Different Latitudes Fig. 2.6 Moran and Morgan (1997)
ATM OCN 100 Summer Our Tilted Earth
ATM OCN 100 Summer Sun Paths for Mid Latitudes Fig Moran and Morgan (1997)
ATM OCN 100 Summer Diurnal Variation in Solar Altitude Angle at Madison
ATM OCN 100 Summer C. THE EARTH, THE SUN & THE RADIATION LINK (con’t.) u Disposition of solar radiation in Earth- atmosphere system –Reflected –Scattered –Absorbed –Transmitted u Albedo where... where...
ATM OCN 100 Summer ALBEDO u The reflectivity of a surface: u Albedo of surfaces: u Implications
ATM OCN 100 Summer C. THE EARTH, THE SUN & THE RADIATION LINK (con’t.) u Terrestrial radiation –Emitted from earth-atmosphere system; –Radiating temperature –Peak radiation region m.
ATM OCN 100 Summer Terrestrial or Long Wave Radiation Emitted at 300 K See Fig 2.4, Moran & Morgan (1997)
ATM OCN 100 Summer Consequences u If more input than loss –Then Radiative heating u If more loss than input –Then Radiative cooling
ATM OCN 100 Summer ATM OCN Summer 2002 LECTURE 8 ATMOSPHERIC ENERGETICS: RADIATION & ENERGY BUDGETS u A. INTRODUCTION: – How does Planet Earth respond to solar heating? F Why does temperature vary spatially? F How do the diurnal and annual temperature cycles develop? – How does Planet Earth maintain a habitable environment?
ATM OCN 100 Summer Tropical Storm Keith
ATM OCN 100 Summer
51 B. ENERGY (HEAT) BUDGETS u Energy budget philosophy INPUT = OUTPUT + STORAGE INPUT = OUTPUT + STORAGE u Planetary annual energy budget – Short wave radiation components – Long wave radiation components – Assume INPUT = OUTPUT for entire planet & over year (since)...
ATM OCN 100 Summer ANNUAL GLOBAL AVERAGE TEMPERATURE See Fig Moran & Morgan (1997)
ATM OCN 100 Summer Planetary Radiative Energy Budget From Geog. 101 UW-Stevens Point
ATM OCN 100 Summer Background - The Earth, The Sun & The Radiation Link u INPUT -- Solar Radiation u OUTPUT -- Terrestrial Radiation
ATM OCN 100 Summer Background - The Earth, The Sun & The Radiation Link u INPUT -- Solar Radiation –From Sun radiating at temperature 6000 K; –Peak radiation m; –Solar Constant 2 cal/cm 2 /min or 1370 W/m 2
ATM OCN 100 Summer Extra-atmospheric Solar Radiation See Fig 2.3, Moran & Morgan (1997)
ATM OCN 100 Summer Background - The Earth, The Sun & The Radiation Link u OUTPUT -- Terrestrial radiation –Emitted from earth-atmosphere system; –Radiating temperature –Peak radiation region m.
ATM OCN 100 Summer Terrestrial or Long Wave Radiation Emitted at 300 K See Fig 2.4, Moran & Morgan (1997)
ATM OCN 100 Summer Annual Average Planetary Energy Budget Fig. 4.1 Moran & Morgan (1997)
ATM OCN 100 Summer Short-wave radiation components of the Annual Average Planetary Energy Budget Fig. 4.1 Moran & Morgan (1997)
ATM OCN 100 Summer PLANETARY ENERGY BUDGETS Short Wave Components u Disposition of solar radiation in Earth- atmosphere system –Reflected –Scattered –Absorbed –Transmitted u Albedo
ATM OCN 100 Summer PLANETARY ENERGY BUDGETS Short Wave Components u Disposition of solar radiation in Earth-atmosphere system –Reflected –Scattered –Absorbed –Transmitted
ATM OCN 100 Summer ALBEDO u The reflectivity of a surface: u Albedo of surfaces: u Implications
ATM OCN 100 Summer Short-wave radiation components of the Annual Average Planetary Energy Budget Fig. 4.1 Moran & Morgan (1997)
ATM OCN 100 Summer PLANETARY ENERGY BUDGETS Short Wave Components u Disposition of solar radiation in Earth- atmosphere system – Reflected – Scattered – Absorbed – Transmitted u Implications Only 70% of available solar radiation used by earth-atmosphere-ocean system!
ATM OCN 100 Summer C. THE EARTH, THE SUN & THE RADIATION LINK (con’t.) u Terrestrial radiation –Emitted from earth-atmosphere system
ATM OCN 100 Summer Long-wave radiation components of the Annual Average Planetary Energy Budget Fig. 4.1 Moran & Morgan (1997)
ATM OCN 100 Summer PLANETARY ENERGY BUDGETS Long Wave Components u Disposition of long radiation in Earth-atmosphere system – Emitted – Absorbed – Transmitted
ATM OCN 100 Summer PLANETARY ENERGY BUDGETS Long Wave Components (con’t.) u Atmospheric or “Greenhouse” Effect –Background –“Greenhouse Gases” [H 2 O, CO 2, CH 4 ]
ATM OCN 100 Summer Selective Absorption of radiation by atmospheric constituents Fig Moran & Morgan (1997)
ATM OCN 100 Summer CURRENT VISIBLE
ATM OCN 100 Summer CURRENT IR
ATM OCN 100 Summer PLANETARY ENERGY BUDGETS Long Wave Components (con’t.) u Atmospheric or “Greenhouse” Effect –Process u Implications
ATM OCN 100 Summer Long-wave radiation components of the Annual Average Planetary Energy Budget Fig. 4.1 Moran & Morgan (1997)
ATM OCN 100 Summer Annual Average Planetary Energy Budget Fig. 4.1 Moran & Morgan (1997)
ATM OCN 100 Summer PLANETARY ENERGY BUDGETS Non-Radiative Components u Disposition of non-radiative fluxes in Earth-atmosphere system u Types of non-radiative fluxes – Sensible heat transport – Latent Heat transport u Implications Our planet is habitable!
ATM OCN 100 Summer Relative magnitudes of energy flow components from earth’s surface Fig. 4.6 Moran & Morgan (1997)
ATM OCN 100 Summer PLANETARY ENERGY BUDGETS (con’t.) u ANNUAL AVERAGE Input = Output Input = Output Absorbed solar = Emitted terrestrial Absorbed solar = Emitted terrestrial u LATITUDINAL DISTRIBUTION – Input & Output Curves – Energy surplus & deficit regions – Meridional energy transport in: F Atmosphere (78% in NH, 92% in SH at 35°) – Air Mass Exchange – Storms F Oceans (22% in NH, 8% in SH at 35°)
ATM OCN 100 Summer Annual Average Radiational Energy Budget as a function of latitude Fig. 4.7 Moran & Morgan (1997)
ATM OCN 100 Summer Atmospheric Circulation
ATM OCN 100 Summer OCEAN CURRENTS
ATM OCN 100 Summer Example of Satellite-Based Radiometers Sea Surface Temperatures from SSEC Holy Cross Trondheim
ATM OCN 100 Summer
84 ENERGY BUDGETS (con’t.) u LOCAL ENERGY BUDGETS u THE FORCING (Energy Gain) –Sunlight & Downward IR u THE RESPONSE – Emitted Long Wave Radiation – Temperature & Temperature Variations
ATM OCN 100 Summer ENERGY BUDGETS (con’t.) u LOCAL ENERGY BUDGETS u THE FORCING (Energy Gain) – Radiative Controls – Air Mass Controls where…
ATM OCN 100 Summer ENERGY BUDGETS (con’t.) u THE FORCING (Energy Gain) –Radiative Controls F Latitude F Clouds F Albedo – Air Mass Controls F Warm Air Advection & Cold Air Advection
ATM OCN 100 Summer Effect of Latitude New York City Miami
ATM OCN 100 Summer
89 Effect of Cloud Cover Los Angeles San Francisco
ATM OCN 100 Summer
91 ENERGY BUDGETS (con’t.) u THE RESPONSE – Temperature & Temperature Variations – Features of local energy budgets – Annual F Summer maximum temperature F Winter minimum temperature – Diurnal F Afternoon maximum temperature F Pre-dawn minimum temperature
ATM OCN 100 Summer ENERGY BUDGETS (con’t.) u THE FORCING (Energy Gain) – Radiative Controls F Latitude F Clouds F Albedo – Air Mass Controls F Warm Air Advection & Cold Air Advection
ATM OCN 100 Summer Examples of (A) Cold Air Advection & (B) Warm Air Advection Fig Moran & Morgan (1997)
ATM OCN 100 Summer Surface Weather Map from Today with Isobars & Fronts
ATM OCN 100 Summer Surface Weather Map from Today with Isobars & Fronts
ATM OCN 100 Summer Current Temperatures ( o F) – 24 Hrs Ago
ATM OCN 100 Summer ENERGY BUDGETS (con’t.) u SURFACE FACTORS TO CONSIDER in the Thermal Response – Albedo (reflectivity) – Conductivity – Surface Moisture – Specific Heat Quantity of heat required to change temperature of a unit mass of substance by 1 Celsius degree.
ATM OCN 100 Summer Distinguishing Sensible & Latent Heats See Fig 4.3 Moran & Morgan (1997)
ATM OCN 100 Summer Thermal Conductivity Example: Change in Snow Cover See Figure 3.6, Moran & Morgan (1997)
ATM OCN 100 Summer TEMPERATURE RESPONSE for substances with differing specific heats See Table 3.2, Moran & Morgan (1997)
ATM OCN 100 Summer Effect of Large Water Bodies Los Angeles Dallas
ATM OCN 100 Summer
103 Example of Satellite-Based Radiometers Sea Surface Temperatures from SSEC
ATM OCN 100 Summer
105
106
107 ENERGY BUDGETS (con’t) u Local energy budgets u Features of local energy budgets – Annual F Summer maximum temperature F Winter minimum temperature – Diurnal F Afternoon maximum temperature F Pre-dawn minimum temperature
ATM OCN 100 Summer
109 Daily Heating
ATM OCN 100 Summer January Temperatures - Madison, WI ( )
ATM OCN 100 Summer July Temperatures - Madison, WI ( )