June 16-20, rd International Symposium on Molecular Spectroscopy Direct Measurements of the Fundamental Rotational Transitions of CD and 13 CH (X 2 Π r ) D. T. Halfen, L. M. Ziurys Dept. of Chemistry Dept. of Astronomy Steward Observatory University of Arizona J.C. Pearson, and B.J. Drouin Jet Propulsion Laboratory California Institute of Technology
June 16-20, rd International Symposium on Molecular Spectroscopy Importance of CH in Astrophysics CH observed in many interstellar environments Tracer of Diffuse Gas at UV, optical wavelengths One of original four interstellar species Detected via electronic spectra Observed optically in Comets Also found towards many Denser Clouds studied via lambda-doubling transition in J = ½ level ( 3 hyperfine components) limited observations of rotational transitions in Far-IR (Kuiper Airborne Observatory) CH: F-X Band: X Per CH: Hale-Bopp CH at 3 GHz: hf components of Lambda-doublet
June 16-20, rd International Symposium on Molecular Spectroscopy Importance of CD and 13 CH CH in many interstellar environments Fundamental building block of interstellar carbon chemistry Useful to measure 12 C/ 13 C ratios via 13 CH/ 12 CH tracer of Galactic Chemical Evolution D/H ratio also significant indicator of fractionation follow chemical pathways Effective avenue to measure such ratios Observing rotational spectra Become very feasible with Herschel, SOFIA KAO CH spectrum Herschel Space Observatory
June 16-20, rd International Symposium on Molecular Spectroscopy Energy Level Diagram: case (b) CD: Brown and Evenson (1989) Wienkoop et al. (2003) LMR, FTIR measurements in mid, far IR 13 CH: Davidson et al (2004) LMR of rotational transitions McCarthy et al. (2006) FTMW measurements of several lambda-doublets with hf This work: measure rotational transitions directly CD and 13 CH: N = 1→1 CD: N = 1 →2 Past Rotational Spectroscopy
June 16-20, rd International Symposium on Molecular Spectroscopy T R * (K) Frequency (GHz) SO 2 CH 3 OH HOOCH 3 U CH 3 OCH 3 CH 3 CH 2 CN NH 2 CHO U CH 2 CHCN U U U U CH 3 OCH 3 U U HCOOH & CH 3 CH 2 CN Are such measurements necessary ?? SgrB2(N)
June 16-20, rd International Symposium on Molecular Spectroscopy Millimeter Direct Absorption with AC Longitudinal Discharge
June 16-20, rd International Symposium on Molecular Spectroscopy JPL Instrumental Details Source developments thanks to Herschel/HIFI Direct Absorption, DC discharge
June 16-20, rd International Symposium on Molecular Spectroscopy Detector Gas Cell Reactant Radiation Source Arizona System
June 16-20, rd International Symposium on Molecular Spectroscopy Gas-Phase Production of CD and 13 CH Arizona Studies Precursor gas: CD 4 or 13 CH 4 –Pressure: 1-5 mTorr Carrier Gas: 40 mTorr Argon AC discharge for –200 W at 600 –Pink-purple glow JPL CD synthesis - 5 mTorr CH 4 /20 mTorr D 2 with 100 mTorr He - DC discharge
June 16-20, rd International Symposium on Molecular Spectroscopy Arizona Data JPL Data Hyperfine Structure Resolved in N = 1→1 Spectrum Halfen et al Ap.J., in press
June 16-20, rd International Symposium on Molecular Spectroscopy Resolved 13 C and H hf structure Arizona Data
June 16-20, rd International Symposium on Molecular Spectroscopy Observed Transition Frequencies of CD (X 2 r ) N NN J JJ F FF Parity obs (MHz) obs - calc (MHz) 1 11.5 + a 1.5+ a + a 0.5+ a 11.5 1.5 0.5 11.5 0.5 1.5 a a 2.5 a a 0.5 a 1.5 a a 11.5 2.5 + 12.5 2.5 a 1.5 a 12.5 2.5+ a 1.5+ a a Blended lines. CD
June 16-20, rd International Symposium on Molecular Spectroscopy Observed Transition Frequencies of 13 CH (X 2 r ) a N NN J JJ F1F1 F1F1 F FF Parity obs (MHz) obs - calc (MHz) 1 11.5 1 1.5+ 11.5 + 10.5 + 11.5 0.5+ 11.5 + 12.5 1.5+ 11.5 0.5+ 00.5 + 01.5 0.5+ 11.5 01.5 0.5 00.5 11.5 10.5 1.5 10.5 12.5 1.5 11.5 11.5 0.5 a Coupling scheme: J = N + S; F 1 = J + I 1 ; F = F 1 + I 2 ; where I 1 and I 2 are the 13 C and H nuclear spins, respectively. 13 CH
June 16-20, rd International Symposium on Molecular Spectroscopy Spectroscopic Constants for CD (X 2 r ) ParameterThis work (MHz)Wienkoop et al. ( MHz) B (80) (13) D12.698(90) (36) H c A c (90) (91) (23) p544.89(27)544.41(57) pDpD c (39) q (97)339.45(18) qDqD (34) (69) a (D)8.74(27)8.05(99) b F (D)-8.797(72)-8.99(87) c (D)9.26(81)8.9(1.6) d (D)7.054(87)7.06(90) eqQ(D)-0.69(41) - C Held fixed. Deuterium eqQ determined Improved D hf constants Improved fine structure constants Good agreement with past work
June 16-20, rd International Symposium on Molecular Spectroscopy Spectroscopic Constants for 13 CH (X 2 r ) a ParameterThis work (MHz)McCarthy et al. (MHz)Davidson et al. (MHz) B (18) (270) (285) D a (150) (144) A a (1.14) (1.23) a (33) (36) p (53)998.12(48)998.39(72) pDpD a (54)-0.305(69) q (10) (81) (132) qDqD d (78) (117) a ( 13 C) (85)218.20(57)218.10(1.26) b F ( 13 C)41.989(91)41.83(90)41.99(84) c ( 13 C) (19) (1.17)-131.0(3.6) d ( 13 C)276.67(16)275.14(1.20)275.54(78) d D ( 13 C)-0.393(24)-0.166(177) a (H)54.410(88) (39) a b F (H)-57.60(10) a a c (H)57.19(23) a a d (H)43.841(41)43.836(54) a d D (H)0.0836(50)0.0826(78) a Held fixed. Proton b F and c established Improved 13 C hyperfine and lambda-doubling constants 4 MHz discrepancy in B
June 16-20, rd International Symposium on Molecular Spectroscopy In Conclusion Lowest energy rotational transitions of CD and 13 CH measured Precision of kHz Determination of hyperfine parameters (eqQ(D), b F (H), c(H)) Improvement of other spectroscopic constants Important for upcoming Herschel, SOFIA observations Used to establish 12 C/ 13 C ratios Degree of deuterium enhancement in fundamental building block CH ACKNOWLEDGEMENTS: NASA Lab Astrophysics Program