Advisor: Prof. Yen-Kuang Kuo

Slides:



Advertisements
Similar presentations
2003/04/071 Characteristic of 850-nm InGaAs/AlGaAs Vertical-Cavity Surface-Emitting Lasers Master’s thesis of Yuni Chang Speaker:Han-Yi Chu National Changhua.
Advertisements

EP 311 PHYSICS OF SEMICONDUCTOR DEVICES
 To overcome these issues, a “dual-stage MQW” structure was proposed to enhance the electron injection and improve the crystalline quality of the overlying.
A New Design Tool for Nanoplasmonic Solar Cells using 3D Full Wave Optical Simulation with 1D Device Transport Models Liming Ji* and Vasundara V. Varadan.
Nanostructures Research Group Center for Solid State Electronics Research Quantum corrected full-band Cellular Monte Carlo simulation of AlGaN/GaN HEMTs.
Latest development of InGaN and Short-Wavelength LD/LED/VCSEL 屠嫚琳 Man-lin Tu.
Graphene & Nanowires: Applications Kevin Babb & Petar Petrov Physics 141A Presentation March 5, 2013.
EE 230: Optical Fiber Communication Lecture 9 From the movie Warriors of the Net Light Sources.
(AlGaN/GaN) High electron mobility transistors Low dimensional System Master of Nanoscience Olatz Idigoras Lertxundi.
Course code: EE4209 Md. Nur Kutubul Alam Department of EEE KUET High Electron Mobility Transistor (HEMT)
Wei E.I. Sha, Wallace C.H. Choy, and Weng Cho Chew
Finite element simulations of compositionally graded InGaN solar cells G.F. Brown a,b,*, J.W.AgerIIIb, W.Walukiewicz b, J.Wua, b,a Advisor: H.C. Kuo Reporter:
Studies of Minority Carrier Recombination Mechanisms in Beryllium Doped GaAs for Optimal High Speed LED Performance An Phuoc Doan Department of Electrical.
Advanced Semiconductor Physics ~ Dr. Jena University of Notre Dame Department of Electrical Engineering SIZE DEPENDENT TRANSPORT IN DOPED NANOWIRES Qin.
Fiber-Optic Communications James N. Downing. Chapter 5 Optical Sources and Transmitters.
9. Semiconductors Optics Absorption and gain in semiconductors Principle of semiconductor lasers (diode lasers) Low dimensional materials: Quantum wells,
Lecture Jan 31,2011 Winter 2011 ECE 162B Fundamentals of Solid State Physics Band Theory and Semiconductor Properties Prof. Steven DenBaars ECE and Materials.
Prof. Juejun (JJ) Hu MSEG 667 Nanophotonics: Materials and Devices 9: Absorption & Emission Processes Prof. Juejun (JJ) Hu
Principle of Diode LASER Laser 2
Steady State Simulation of Semiconductor Optical Amplifier
Simulation of InGaN violet and ultraviolet multiple-quantum-well laser diodes Sheng-Horng Yen, Bo-Jean Chen, and Yen-Kuang Kuo* *Department of Physics,
Nitride semiconductors and their applications Part II: Nitride semiconductors.
Images:
May 25, 2007Bilkent University, Physics Department1 Optical Design of Waveguides for Operation in the Visible and Infrared Mustafa Yorulmaz Bilkent University,
1 Introduction to Optical Electronics Quantum (Photon) Optics (Ch 12) Resonators (Ch 10) Electromagnetic Optics (Ch 5) Wave Optics (Ch 2 & 3) Ray Optics.
Chapter 4 Photonic Sources.
Light Emitting Diodes NanoLab Outline Motivation/Applications: Why LED’s? Background Fabrication Testing Conclusions.
1 Simulation of Light-Emitting Diodes and Solar Cells Yen-Kuang Kuo, Jih-Yuan Chang, Miao-Chan Tsai, Tsun-Hsin Wang, Yi-An Chang, Fang-Ming Chen, and Shan-Rong.
APPLIED PHYSICS LETTERS 96, , 2010
ECE 340 Lecture 27 P-N diode capacitance
Page 1 Band Edge Electroluminescence from N + -Implanted Bulk ZnO Hung-Ta Wang 1, Fan Ren 1, Byoung S. Kang 1, Jau-Jiun Chen 1, Travis Anderson 1, Soohwan.
Presented to: Presented by:
Tzveta Apostolova Institute for Nuclear Research and Nuclear Energy,
SSL Lab. SSL Lab. Solid State Lighting Lab. Southern Taiwan University 1 Adviser : Hon Kuan Adviser : Hon Kuan Wen-Cheng Tzou Wen-Cheng Tzou Reporter :
Interplay of polarization fields and Auger recombination in the efficiency droop of nitride light-emitting diodes APPLIED PHYSICS LETTERS 101, (2012)
Basic Electronics By Asst Professor : Dhruba Shankar Ray For B.Sc. Electronics Ist Year 1.
1 Numerical study on efficiency droop of blue InGaN light-emitting diodes Yen-Kuang Kuo*, Jih-Yuan Chang, and Jen-De Chen Department of Physics, National.
Efficiency and Electron Leakage Characteristics in GaN-Based Light-Emitting Diodes Without AlGaN Electron-Blocking-Layer Structures Han-Youl Ryu, Jong-In.
The Analysis of Light Absorption and Extraction of InGaN LEDs Jeng-Feng Lin, Chin-Chieh Kang, Pei-Chiang Kao Department of Electro-Optical Engineering,
Design and characterization of AlGaInAs quantum-well lasers Academic advisor ︰郭艷光 教授 Reporter ︰謝尚衛 Number ︰ Date ︰ 2003/1/6.
Plank Formula The 1900 quantum hypothesis by Max Planck that any energy is radiated and absorbed in quantities divisible by discrete ‘energy elements’,
TCAD simulation of Si crystal with different clusters. Ernestas Zasinas, Rokas Bondzinskas, Juozas Vaitkus Vilnius University.
ECEE 302: Electronic Devices
Spontaneous Emission in 2D Arbitrary Inhomogeneous Environment Peng-Fei Qiao, Wei E. I. Sha, Yongpin P. Chen, Wallace C. H. Choy, and Weng Cho Chew * Department.
Development of an analytical mobility model for the simulation of ultra thin SOI MOSFETs. M.Alessandrini, *D.Esseni, C.Fiegna Department of Engineering.
Heterostructures & Optoelectronic Devices
Region of possible oscillations
Introduction to semiconductor technology. Outline –4 Excitation of semiconductors Optical absorption and excitation Luminescence Recombination Diffusion.
報告人 : 洪國慶. Outline INTRODUCTION EXPERIMENTAL DETAILS RESULTS AND DISCUSSION CONCLUSION REFERENCES 2.
Use different substrate for InGaN-GaN LED 陳詠升. Outline Introduction Experiment Results and Discussion Conclusion References.
Photoluminescence and Photocurrent in a Blue LED Ben Stroup & Timothy Gfroerer, Davidson College, Davidson, NC Yong Zhang, University of North Carolina.
Relationship between thermal and luminance distributions in high-power lateral GaN/InGaN light-emitting diodes D.P. Han, J.I. Shim and D.S. Shin ELECTRONICS.
Y.W. Lin. Outline Introduction Experiments Results and Discussion Conclusion References.
P.K. Lin 1.
EXPERIMENTAL Sapphire 25nm Buffer layer 5μm Undoped GaN Si doped n-GaN MQW 3 nm undoped InGaN well 12nm Si doped GaN barrier Mg doped p-AlGaN EBL 150nm.
Effect of N-Type AlGaN Layer on Carrier Transportation and Efficiency Droop of Blue InGaN Light-Emitting Diodes 1 Sheng-Horng Yen, Miao-Chan Tsai, Meng-Lun.
專題研討 ( 二 ) Electron-Blocking-Layer, n-EBL Hole-Blocking-Layer, HBL 碩研電子一甲 MA 楊書瑋.
National Cheng Kung University Institute of microelectronics OEIC Lab. Jun P. 1 ZnO-based thin film double heterostructured- ultraviolet light-emitting.
Experimental Details 1 Fig. 1. Schematic diagram of the investigated LED layer structure. In the present work, the Mg doping width of the LT p-GaN interlayer.
GaN-Based MSM Photodetectors Prepared on Patterned Sapphire Substrates Shoou-Jinn Chang, Member, IEEE, Y. D. Jhou, Y. C. Lin, S. L. Wu, C. H. Chen, T.
A semiconductor material cannot be viewed as a collection of non interacting atoms, each with its own individual energy levels. Because of the proximity.
Small internal electric fields in quaternary InAlGaN heterostructures S.P. Łepkowski 1, P. Lefebvre 2, S. Anceau 1,2, T. Suski 1, H. Teisseyre 1, H. Hirayama.
(a)luminescence (LED) (b)optical amplifiers (c)laser diodes.
Y.Y CHEN.
Photonics-More 22 February 2017
3.1.4 Direct and Indirect Semiconductors
Photonics-LED And LASER 29 February 2016
Introduction of Master's thesis of Jih-Yuan Chang and Wen-Wei Lin
UNIT-III Direct and Indirect gap materials &
Photonics-More 6 March 2019 One More slide on “Bandgap” Engineering.
Presentation transcript:

Advisor: Prof. Yen-Kuang Kuo Advantages of Blue InGaN Light-Emitting Diodes with Slightly-Doped Step-Like Electron-Blocking Layer Tsun-Hsin Wang Ph.D. Candidate, Department of Physics, National Changhua University of Education Advisor: Prof. Yen-Kuang Kuo

Tsun-Hsin Wang/BLL/NCUE Outline Introduction and Motivation Device Structure Simulation Results Conclusion Reference Tsun-Hsin Wang/BLL/NCUE

Tsun-Hsin Wang/BLL/NCUE Introduction S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, Nat. Photonics 3, 180 (2009). More than one-fifth of US electricity is used to power artificial lighting. Light-emitting diodes (LEDs) based on group III/nitride semiconductors are bringing about a revolution in energy-efficient lighting. Tsun-Hsin Wang/BLL/NCUE

Tsun-Hsin Wang/BLL/NCUE Introduction E. F. Schubert and J. K. Kim, Science 308, 5276 (2005). Energy savings and environmental benefits Spectral power distribution Spatial distribution Color temperature Temporal modulation Polarization properties Spontaneous polarization =>Asymmetric wurtzite Piezoelectric polarization =>Lattice mismatch Tsun-Hsin Wang/BLL/NCUE

Tsun-Hsin Wang/BLL/NCUE Motivation Development of InGaN LEDs GaN-InGaN-GaN barriers InGaN-AlGaN-InGaN barriers Slightly-doped step-like electron blocking layer (EBL) Shallow first well Kuo et al., Appl. Phys. Lett. 99, 091107 (2011). Kuo et al., Appl. Phys. Lett. 100, 031112 (2012). Kuo et al., IEEE Photonics Technol. Lett. 24, 1506 (2012). Wang et al., IEEE Photonics Technol. Lett. (2012). Tsun-Hsin Wang/BLL/NCUE

Tsun-Hsin Wang/BLL/NCUE Device Structure p-contact p-GaN p-AlGaN i-InGaN/GaN n-contact n-GaN n-GaN i-GaN sapphire Kuo et al., Appl. Phys. Lett. 95, 011116 (2009). Tsun-Hsin Wang/BLL/NCUE

Tsun-Hsin Wang/BLL/NCUE Device Structure p-contact p-GaN p-AlGaN i-InGaN/GaN n-contact n-GaN n-GaN i-GaN sapphire Tsun-Hsin Wang/BLL/NCUE

Tsun-Hsin Wang/BLL/NCUE Device Structure p-contact p-GaN p-AlGaN i-InGaN/GaN n-contact n-GaN n-GaN i-GaN sapphire Tsun-Hsin Wang/BLL/NCUE

Tsun-Hsin Wang/BLL/NCUE Device Structure Drawbacks of polarization electric field: Serious tilting of energy band Severe leakage current of electrons Insufficient injection efficiency of holes Nonradiative Auger recombination induced by non-uniform distribution of carriers => Efficiency droop! Tsun-Hsin Wang/BLL/NCUE

Tsun-Hsin Wang/BLL/NCUE Device Structure p-contact composition doping (1018 cm–3) conventional EBL (original) Al0.15Ga0.85N 1.2 slightly-doped EBL 0.6 slightly-doped step-like EBL Al0.075Ga0.925N GaN p-GaN p-AlGaN i-InGaN/GaN n-contact n-GaN n-GaN i-GaN sapphire Impact ionization Hole concentration is conventionally 1% of dopant concentration. Tsun-Hsin Wang/BLL/NCUE

Tsun-Hsin Wang/BLL/NCUE Simulation Results Effective potential height Conduction band: electron leakage current Valence band: hole injection efficiency Tsun-Hsin Wang/BLL/NCUE

Tsun-Hsin Wang/BLL/NCUE Simulation Results Effective potential height Conduction band: electron leakage current Valence band: hole injection efficiency Tsun-Hsin Wang/BLL/NCUE

Tsun-Hsin Wang/BLL/NCUE Simulation Results Last barrier Two dimensional electron gas (2DEG) Tsun-Hsin Wang/BLL/NCUE

Tsun-Hsin Wang/BLL/NCUE Simulation Results Tsun-Hsin Wang/BLL/NCUE

Tsun-Hsin Wang/BLL/NCUE Simulation Results Tsun-Hsin Wang/BLL/NCUE

Tsun-Hsin Wang/BLL/NCUE Conclusion The advantages of blue InGaN LED with slight-doped step-like EBL are studied numerically. According to the simulation results, the LED has enhanced carrier concentrations in the QWs due to appropriately modified energy band diagrams which are favorable for the injection of holes without the price of confinement of electrons. Tsun-Hsin Wang/BLL/NCUE

Tsun-Hsin Wang/BLL/NCUE Reference T.-H. Wang and Y.-K. Kuo, IEEE Photonics Technol. Lett. accepted (2012). Y.-K. Kuo, T.-H. Wang, J.-Y. Chang, and J.-D. Chen, IEEE Photonics Technol. Lett. 24, 1506 (2012). Y.-K. Kuo and T.-H. Wang, IEEE J. Quantum Electron. 48, 946 (2012). Y.-K. Kuo, T.-H. Wang, and J.-Y. Chang, Appl. Phys. Lett. 100, 031112 (2012).  Y.-K. Kuo, T.-H. Wang, J.-Y. Chang, and M.-C. Tsai, Appl. Phys. Lett. 99, 091107 (2011). Tsun-Hsin Wang/BLL/NCUE

Tsun-Hsin Wang/BLL/NCUE Acknowledgement: This work was supported by the National Science Council under grant NSC-99-2119-M-018-002-MY3. Thank you for your attention! Tsun-Hsin Wang/BLL/NCUE

Tsun-Hsin Wang/BLL/NCUE Q & A – Physical models Poisson equation: ∇2V=−ρ /ε, where ρ: volume charge density, ε: dielectric constant. Continuity equation: ∇J+∂ρ/∂t=0, where J: current density, t: time. Complex wave equation: ∇2W+k2(ε−β2)W=0, where W: optical wave function, k: wave vector, β: real eigen-value. Rate equation: ∂S/∂t=c(g−α)/n, where c: speed of light, n: refractive index, g: gain, α: loss, S: photon number. Gain equation: g=α+[ln(1/R1R2)]2L, where R: reflectance of mirrors, L: cavity length. APSYS by Crosslight Software Inc. Tsun-Hsin Wang/BLL/NCUE

Tsun-Hsin Wang/BLL/NCUE Q & A – Physical models Equations Parameters Poisson equation: V, n, p, S, W, g Continuity equation: V, n, p Complex wave equation: n, p, S, W, g Rate equation: n, p, W, lambda, g Gain equation: n, p, lambda, g V: potential, n and p: electron and hole concentration, S: photon number, W: optical field intensity, lambda: wavelength, g: gain. APSYS by Crosslight Software Inc. Tsun-Hsin Wang/BLL/NCUE

Tsun-Hsin Wang/BLL/NCUE Q & A – Parameters Polarization Vurgaftman et al., J. Appl. Phys. 94, 3675 (2003). Tsun-Hsin Wang/BLL/NCUE

Tsun-Hsin Wang/BLL/NCUE Q & A – Parameters Polarization Wu, J. Appl. Phys. 106, 011101 (2009). Tsun-Hsin Wang/BLL/NCUE

Tsun-Hsin Wang/BLL/NCUE Q & A – Parameters Energy band gap Wu, J. Appl. Phys. 106, 011101 (2009). Tsun-Hsin Wang/BLL/NCUE

Tsun-Hsin Wang/BLL/NCUE Q & A – Parameters Energy band gap Wu, J. Appl. Phys. 106, 011101 (2009). Tsun-Hsin Wang/BLL/NCUE

Tsun-Hsin Wang/BLL/NCUE Q & A – Parameters Mobility Kuo et al., IEEE J. Quantum Electron. 46, 1214 (2010). Tsun-Hsin Wang/BLL/NCUE

Tsun-Hsin Wang/BLL/NCUE Q & A – Parameters Recombination rate Kuo et al., IEEE J. Quantum Electron. 46, 1214 (2010). Tsun-Hsin Wang/BLL/NCUE

Tsun-Hsin Wang/BLL/NCUE Q & A – Parameters Efficiency droop Tsun-Hsin Wang/BLL/NCUE