Advisor: Prof. Yen-Kuang Kuo Advantages of Blue InGaN Light-Emitting Diodes with Slightly-Doped Step-Like Electron-Blocking Layer Tsun-Hsin Wang Ph.D. Candidate, Department of Physics, National Changhua University of Education Advisor: Prof. Yen-Kuang Kuo
Tsun-Hsin Wang/BLL/NCUE Outline Introduction and Motivation Device Structure Simulation Results Conclusion Reference Tsun-Hsin Wang/BLL/NCUE
Tsun-Hsin Wang/BLL/NCUE Introduction S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, Nat. Photonics 3, 180 (2009). More than one-fifth of US electricity is used to power artificial lighting. Light-emitting diodes (LEDs) based on group III/nitride semiconductors are bringing about a revolution in energy-efficient lighting. Tsun-Hsin Wang/BLL/NCUE
Tsun-Hsin Wang/BLL/NCUE Introduction E. F. Schubert and J. K. Kim, Science 308, 5276 (2005). Energy savings and environmental benefits Spectral power distribution Spatial distribution Color temperature Temporal modulation Polarization properties Spontaneous polarization =>Asymmetric wurtzite Piezoelectric polarization =>Lattice mismatch Tsun-Hsin Wang/BLL/NCUE
Tsun-Hsin Wang/BLL/NCUE Motivation Development of InGaN LEDs GaN-InGaN-GaN barriers InGaN-AlGaN-InGaN barriers Slightly-doped step-like electron blocking layer (EBL) Shallow first well Kuo et al., Appl. Phys. Lett. 99, 091107 (2011). Kuo et al., Appl. Phys. Lett. 100, 031112 (2012). Kuo et al., IEEE Photonics Technol. Lett. 24, 1506 (2012). Wang et al., IEEE Photonics Technol. Lett. (2012). Tsun-Hsin Wang/BLL/NCUE
Tsun-Hsin Wang/BLL/NCUE Device Structure p-contact p-GaN p-AlGaN i-InGaN/GaN n-contact n-GaN n-GaN i-GaN sapphire Kuo et al., Appl. Phys. Lett. 95, 011116 (2009). Tsun-Hsin Wang/BLL/NCUE
Tsun-Hsin Wang/BLL/NCUE Device Structure p-contact p-GaN p-AlGaN i-InGaN/GaN n-contact n-GaN n-GaN i-GaN sapphire Tsun-Hsin Wang/BLL/NCUE
Tsun-Hsin Wang/BLL/NCUE Device Structure p-contact p-GaN p-AlGaN i-InGaN/GaN n-contact n-GaN n-GaN i-GaN sapphire Tsun-Hsin Wang/BLL/NCUE
Tsun-Hsin Wang/BLL/NCUE Device Structure Drawbacks of polarization electric field: Serious tilting of energy band Severe leakage current of electrons Insufficient injection efficiency of holes Nonradiative Auger recombination induced by non-uniform distribution of carriers => Efficiency droop! Tsun-Hsin Wang/BLL/NCUE
Tsun-Hsin Wang/BLL/NCUE Device Structure p-contact composition doping (1018 cm–3) conventional EBL (original) Al0.15Ga0.85N 1.2 slightly-doped EBL 0.6 slightly-doped step-like EBL Al0.075Ga0.925N GaN p-GaN p-AlGaN i-InGaN/GaN n-contact n-GaN n-GaN i-GaN sapphire Impact ionization Hole concentration is conventionally 1% of dopant concentration. Tsun-Hsin Wang/BLL/NCUE
Tsun-Hsin Wang/BLL/NCUE Simulation Results Effective potential height Conduction band: electron leakage current Valence band: hole injection efficiency Tsun-Hsin Wang/BLL/NCUE
Tsun-Hsin Wang/BLL/NCUE Simulation Results Effective potential height Conduction band: electron leakage current Valence band: hole injection efficiency Tsun-Hsin Wang/BLL/NCUE
Tsun-Hsin Wang/BLL/NCUE Simulation Results Last barrier Two dimensional electron gas (2DEG) Tsun-Hsin Wang/BLL/NCUE
Tsun-Hsin Wang/BLL/NCUE Simulation Results Tsun-Hsin Wang/BLL/NCUE
Tsun-Hsin Wang/BLL/NCUE Simulation Results Tsun-Hsin Wang/BLL/NCUE
Tsun-Hsin Wang/BLL/NCUE Conclusion The advantages of blue InGaN LED with slight-doped step-like EBL are studied numerically. According to the simulation results, the LED has enhanced carrier concentrations in the QWs due to appropriately modified energy band diagrams which are favorable for the injection of holes without the price of confinement of electrons. Tsun-Hsin Wang/BLL/NCUE
Tsun-Hsin Wang/BLL/NCUE Reference T.-H. Wang and Y.-K. Kuo, IEEE Photonics Technol. Lett. accepted (2012). Y.-K. Kuo, T.-H. Wang, J.-Y. Chang, and J.-D. Chen, IEEE Photonics Technol. Lett. 24, 1506 (2012). Y.-K. Kuo and T.-H. Wang, IEEE J. Quantum Electron. 48, 946 (2012). Y.-K. Kuo, T.-H. Wang, and J.-Y. Chang, Appl. Phys. Lett. 100, 031112 (2012). Y.-K. Kuo, T.-H. Wang, J.-Y. Chang, and M.-C. Tsai, Appl. Phys. Lett. 99, 091107 (2011). Tsun-Hsin Wang/BLL/NCUE
Tsun-Hsin Wang/BLL/NCUE Acknowledgement: This work was supported by the National Science Council under grant NSC-99-2119-M-018-002-MY3. Thank you for your attention! Tsun-Hsin Wang/BLL/NCUE
Tsun-Hsin Wang/BLL/NCUE Q & A – Physical models Poisson equation: ∇2V=−ρ /ε, where ρ: volume charge density, ε: dielectric constant. Continuity equation: ∇J+∂ρ/∂t=0, where J: current density, t: time. Complex wave equation: ∇2W+k2(ε−β2)W=0, where W: optical wave function, k: wave vector, β: real eigen-value. Rate equation: ∂S/∂t=c(g−α)/n, where c: speed of light, n: refractive index, g: gain, α: loss, S: photon number. Gain equation: g=α+[ln(1/R1R2)]2L, where R: reflectance of mirrors, L: cavity length. APSYS by Crosslight Software Inc. Tsun-Hsin Wang/BLL/NCUE
Tsun-Hsin Wang/BLL/NCUE Q & A – Physical models Equations Parameters Poisson equation: V, n, p, S, W, g Continuity equation: V, n, p Complex wave equation: n, p, S, W, g Rate equation: n, p, W, lambda, g Gain equation: n, p, lambda, g V: potential, n and p: electron and hole concentration, S: photon number, W: optical field intensity, lambda: wavelength, g: gain. APSYS by Crosslight Software Inc. Tsun-Hsin Wang/BLL/NCUE
Tsun-Hsin Wang/BLL/NCUE Q & A – Parameters Polarization Vurgaftman et al., J. Appl. Phys. 94, 3675 (2003). Tsun-Hsin Wang/BLL/NCUE
Tsun-Hsin Wang/BLL/NCUE Q & A – Parameters Polarization Wu, J. Appl. Phys. 106, 011101 (2009). Tsun-Hsin Wang/BLL/NCUE
Tsun-Hsin Wang/BLL/NCUE Q & A – Parameters Energy band gap Wu, J. Appl. Phys. 106, 011101 (2009). Tsun-Hsin Wang/BLL/NCUE
Tsun-Hsin Wang/BLL/NCUE Q & A – Parameters Energy band gap Wu, J. Appl. Phys. 106, 011101 (2009). Tsun-Hsin Wang/BLL/NCUE
Tsun-Hsin Wang/BLL/NCUE Q & A – Parameters Mobility Kuo et al., IEEE J. Quantum Electron. 46, 1214 (2010). Tsun-Hsin Wang/BLL/NCUE
Tsun-Hsin Wang/BLL/NCUE Q & A – Parameters Recombination rate Kuo et al., IEEE J. Quantum Electron. 46, 1214 (2010). Tsun-Hsin Wang/BLL/NCUE
Tsun-Hsin Wang/BLL/NCUE Q & A – Parameters Efficiency droop Tsun-Hsin Wang/BLL/NCUE