Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Slides:



Advertisements
Similar presentations
Journées Instrumentation du GDR Nucléon 8-9 Avril 2008, CEA Saclay Polarized Positrons at the Jefferson Laboratory (i) Physics motivations (ii) Principe.
Advertisements

POLARIMETRY of MeV Photons and Positrons Overview Beam Characterization – undulator photons – positrons Basics of the Transmission Method – for photon.
The E166 Experiment K. Peter Schüler e+ source options for the ILC undulator source scheme for ILC E166 – proof-of-principle demonstration of the undulator.
Liverpool Accelerator Physics Group International Linear Collider (ILC) R&D The Cockcroft Institute The University of Liverpool is the lead organisation.
Fast and Precise Beam Energy Measurement at the International Linear Collider Michele Viti.
Compton polarimetry for EIC Jefferson Lab Compton Polarimeters.
1 Electron Beam Polarimetry for EIC/eRHIC W. Lorenzon (Michigan) Introduction Polarimetry at HERA Lessons learned from HERA Polarimetry at EIC.
Undulator-Based Positron Production in the Final Focus Test Beam (E-166) The International Polarized Positron Production Collaboration K.T. McDonald, J.C.
JCS e + /e - Source Development and E166 J. C. Sheppard, SLAC June 15, 2005.
K.T. McDonald DoE Review Aug. 10, E-166 Experiment E-166 is a demonstration of undulator-based polarized positron production for linear colliders.
EPAC June 2003 The EPAC June 2003 Questions 1. Clarify the Motivation for the Proposal. 2. How to ensure the e+ polarimeter works right away? 3. What is.
5 th Rencontres du Vietnam - Aug. 7, 2004 Polarized Positrons…E166 A.W.Weidemann 1 Introduction (What, who) Motivation (Why) Experiment and Polarimetry.
E166 Collaboration J.C. Sheppard SLAC, October, 2003 E166 Background Test Simulations: Overview-what do we need J. C. Sheppard.
Stanford – Mar , 2005 LCWS-2005 Norbert Meyners Upstream Polarimetry with 4-Magnet Chicane 1 Introduction & Overview O Compton polarimetry basics.
E166 “Polarized Positrons for Future Linear Colliders” John C. Sheppard E166 Co-spokesman SLAC: August 31, 2004.
K.T. McDonald DoE Review July 29, E-166 Experiment E-166 is a demonstration of undulator-based polarized positron production for linear colliders.
Undulator-Based Production of Polarized Positrons Status Report on E-166 Undulator-Based Production of Polarized Positrons K.T. McDonald Princeton University.
Left: The polarization of the undulator radiation as a function of energy. Right: Calculated positron longitudinal polarization as a function of energy.
NLC - The Next Linear Collider Project Sheppard/Pitthan June 26, 2015 Towards an Undulator Based NLC Positron Source Towards an Undulator Based NLC Positron.
K. LaihemE166 collaboration LCWS06 Bangalore March 12th 2006 The E166 experiment Development of a polarized positron source for the ILC. Karim Laihem on.
Undulator-Based Production of Polarized Positrons An experiment in the 50 GeV Beam in the SLAC FFTB E-166 Undulator-Based Production of Polarized Positrons.
Undulator-Based Positron Production in the Final Focus Test Beam (E-166) K.T. McDonald, J.C. Sheppard, Co-Spokespersons SLAC Experimental Program Advisory.
E166 Collaboration About 45+2 members from 16+1 institutions from all three regions (Asia, Europe, the Americas, and Daresbury) About 45+2 members from.
EPAC June 2003 Undulator-Based Production of Polarized Positrons A proposal for the 50 GeV Beam in the FFTB E-166 Undulator-Based Production of Polarized.
K. Moffeit 6 Jan 2005 WORKSHOP Machine-Detector Interface at the International Linear Collider SLAC January 6-8, 2005 Polarimetry at the ILC Design issues.
NLC - The Next Linear Collider Project Sheppard /Pitthan November 7, 2002 Positron Production and Test in the FFTB of Undulator-Based Concepts Positron.
NLC - The Next Linear Collider Project Sheppard/Pitthan July 14, 2015 POWER Meeting June 8=9,2002 Durham, England POWER Meeting June 8=9,2002 Durham, England.
20 March 2005Ken Moffeit LCWS1 Highlights from the MDI workshop Spin Rotation System for 2 IR’s Downstream polarimetry Ken Moffeit.
SLC  Testbed Proposal Jeff Gronberg  working group SC Linear Collider Retreat June 26 – 29, 2002.
M. Woods (SLAC) Beam Diagnostics for test facilities of i)  ii) polarized e+ source January 9 –11, 2002.
The PEPPo e - & e + polarization measurements E. Fanchini On behalf of the PEPPo collaboration POSIPOL 2012 Zeuthen 4-6 September E. Fanchini -Posipol.
Beijing, Feb 3 rd, 2007 LEPOL 1 Low Energy Positron Polarimetry for the ILC Sabine Riemann (DESY) On behalf of the LEPOL Collaboration.
Polarimetry of Proton Beams at RHIC A.Bazilevsky Summer Students Lectures June 17, 2010.
Simulation of Positron Production and Capturing. W. Gai, W. Liu, H. Wang and K. Kim Working with SLAC & DESY.
Beijing, Feb 3 rd, % e+ Poalarization 1 Physics with an initial positron polarisation of ≈30% Sabine Riemann (DESY)
Polarimetry at the LC Source Which type of polarimetry, at which energies for LC ? Sabine Riemann (DESY), LEPOL Group International Workshop on Linear.
Helical Undulator Based Positron Source for LC Wanming Liu 05/29/2013.
EUROTeV WP4 Report Polarised Positron Source Jim Clarke, on behalf of the WP4 team DESY Zeuthen STFC (Daresbury and RAL) University of Durham University.
Oct. 6, Summary of the Polarisation Session J. Clarke, G. Moortgat-Pick, S. Riemann 10 November 2006, ECFA Workshop, Valencia.
Spin Control and Transportation O. Adeyemi*, M. Beckmann**, V. Kovalenko*, L. Malysheva*, G. Moortgat-Pick*, S. Riemann**, A. Schälicke**, A. Ushakov**
Undulator-Based Positron Production in the Final Focus Test Beam (E-166) The International Polarized Positron Production Collaboration K.T. McDonald, J.C.
Laser Based Polarized e + e + Source for ILC 8th ACFA Daegu 11-14/Jul/2005 Tsunehiko OMORI (KEK)
EIC Compton detector update October 24 th 2014 Alexandre Camsonne.
Summary of Workshop on Precision Electron Beam Polarimetry Newport News June 9-10, 2003 workshop summary by Dave Gaskell, Jefferson Lab Richard Jones,
Polarimetry Report Sabine Riemann on behalf of the DESY/HUB group January 24, 2008 EUROTeV Annual Meeting, Frascati.
E166: Polarized Positrons & Polarimetry K. Peter Schüler ILC: - why polarized positrons - e+ source options - undulator source scheme E166 - proof-of-principle.
Fast or slow positron spin flipping Sabine Riemann (DESY) November 17, 2008 ILC08, University of Illinois - Chicago.
K. Floettmann KEK, Nov , 2004 GAMMA BASED POSITRON SOURCE OPTIONS FOR ILC Klaus Floettmann DESY.
Undulator based polarized positron source for Circular electron-positron colliders Wei Gai Tsinghua University/ANL a seminar for IHEP, 4/8/2015.
WG3a Sources Update Jim Clarke on behalf of WG3a GDE Meeting, Frascati, December 2005.
E + Polarized e + generation at KEK-ATF Tsunehiko OMORI (KEK) POSIPOL 27/Apr/2006.
김 귀년 CHEP, KNU Accelerator Activities in Korea for ILC.
Proposal for the End Station Test Beam (ESTB) at SLAC John Jaros ALCPG09 Albuquerque September 30, 2009.
Positron polarization at the ILC: RDR vs. SB2009 Sabine Riemann, DESY Zeuthen International Workshop on Linear Colliders 2010, Geneva October 25-29, 2010.
Thomas Jefferson National Accelerator Facility Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy The Department.
Thomas Jefferson National Accelerator Facility Precision Electron Beam Polarimetry Workshop - June , Jefferson Laboratory Accelerator Tools.
LCWS Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 1 Polarimeter Studies for TESLA O General Considerations O.
Dollan, Laihem, Lohse, Schälicke, Stahl 1 Monte Carlo based studies of polarized positrons source for the International Linear Collider (ILC)
Pb-Parity and Septum Update Presented by: Luis Mercado UMass - Amherst 12/05/2008 Thanks to Robert Michaels, Kent Pachke, Krishna Kumar, Dustin McNulty.
CsI(Tl) Calorimeter and status of the E166 experiment E166 experiment CsI ( Tl) calorimeter construction. Test beam results vs. Geant4 simulation Schedules.
Polarized Electrons for Polarized Positrons
A.P. Potylitsyn, I.S. Tropin Tomsk Polytechnic University,
Progress with Spin Tracking in GEANT4
At a Future Linear Collider
Status Report on E-166 Undulator-Based Production of Polarized Positrons K.T. McDonald Princeton University EPAC Meeting SLAC, November 15, 2003.
E166 - LEPOL - Low Energy Positron Polarimetry for the ILC
Summary for the Sources working group
Polarized Positrons at Jefferson Lab
End Station Test Beam (ESTB) at SLAC
ILC Baseline Design: Physics with Polarized Positrons
Presentation transcript:

Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03

Polarisation at Linear Colliders  Physics Motivation  Polarisation Measurement  Creation of Polarised Beams Contents

Definitions Single Particle: Helicity Particle Bunch: Polarisation

4 Beam Configurations  Unpolarised Beams  Long. Polarisation: Electrons only  Long. Polarisation: Both Beams  Transverse Polarisation

QM States: J = 0 J = 1 J = 0 J = 1 Pol: -90% / 60% 6 % 4 % 36 % 54 %

Understanding Matter, Energy, Space and Time Physics Motivation

Electron Polarisation TDR assumes polarised electron beam (~80 %) Higgs-W coupling from: For m H = 120 GeV:  on g HWW no pol.2.8 % e - pol.0.8 %

Positron Polarisation I: known to be discovered but which is which ? e L e R μ L μ R …… ~~ ~ ~

Positron Polarisation I: e+e+ ~ e+e+ e-e- e-e- ~ , Z e+Le+L e-Le-L e+Le+L ~ e-Le-L ~ ν ~ e+Le+L ~ e-Le-L ~ e+Re+R ~ e-Re-R ~ and e+Le+L ~ e-Le-L ~ e+Re+R ~ e-Re-R ~ or J = 1 J = 0,1

Positron Polarisation II: Giga – Z option needs positron polarisation 10 9 Z 0 in 100 days sin 2 θ eff from A LR Δsin 2 θ eff : ≈ ΔA LR :

Positron Polarisation II: Elektron Positron A LR = =  L -  R  L +  R 2 (1 – 4 sin 2 θ eff ) 1 + (1 – 4 sin 2 θ eff ) 2 needs ΔP/P ≈ Measurements 4 Unknown  L,  R, P +, P -

Positron Polarisation II: A LR = =  L -  R  L +  R 2 (1 – 4 sin 2 θ eff ) 1 + (1 – 4 sin 2 θ eff ) 2 Klaus Mönig

Positron Polarisation III: enhance signal suppress background gravitons into extra dimensions e + e -  G  main background e + e -  ν ν 

Positron Polarisation III: e+e-  Χ0Χ0e+e-  Χ0Χ0 ~~ enhance signal suppress background

Positron Polarisation IV:  = (1 – P + P - )  0 ( 1 + P eff A LR ) effective polarisation P eff = P + - P P + P - for any s-channel J=1 process

Positron Polarisation: effective polarisation in contact interactions (by Sabine Riemann)

Transverse Polarisation: c,b e+e+ e-e- G transverse asymmetry indicate Spin-2 exchange trans. polarisation asymmetries need both beams polarised

Transverse Polarisation: trans. polarisation asymmetries need both beams polarised e e , Z W W TGC e e W W ν Jegerlehner / Fleischer / Kołodziej Triple Gauge Couplings trans. asym. dominated by W L W L

Precision Polarimetry

Phys. Processes for Polarimetry: Mott Scattering: e – Nucleon spin-orbital mom. coupling measures trans. pol. energy ≤ 1 MeV Møller Scattering: e – e polarised iron foils destructive measurement cross LC Compton Scattering: e –  polarised laser target non-invasive main LC

Møller Polarimeter: JLab1 – 6 GeV1.4 % E14316/29 GeV3.7 % SLD45 GeV4.2 % TESLA250 GeV1.0 % JLab Polarimeter

Compton Polarimeter: pol. Laser electron beam N - - N + N - + N +

Compton Polarimeter:

main beam  large  -background near beam  Čerenkov detectors only sensitive to electrons  light guides allow PMT behind schielding

Optimal Position ? Polarimeter: electron source Polarimeter: positron source Polarimeter: at the IP Polarimeter: before the IP Polarimeter: before the IP beam depolarises during collision by ≈ 1 %

Compton Polarimeter: precision: ΔP/P SLC0.52 %achieved NLC0.25 %goal TESLA0.5 %goal Mike Woods< 0.1 %optimist

Polarised e + e - Sources

Static e - Source: Photoeffect on GaAs crystal Acceleration of electrons by static electrical field

Polarised e - source: simple model + spin-orbital momentum coupling + anisotropy of crystal

Polarised e - source: Negative Electron Affinity surface electrons drift to surface L < 100 nm to avoid depolarisation

Polarised e - source: 100 nm GaAs SLC source: = 77 % (97/98) But Problem: charge saturation

Polarised e - source: New Development: Strained Super Lattice

Polarised e - source: New Development: Strained Super Lattice charge limit overcome

Polarised e - source: New Development: Strained Super Lattice charge limit overcome high polarisation SLC: = 74 % E158: = 86 % LC spec: = 80 % Goal: = 90 % but... GaAs crystals are very sensitive  need UHV (< Torr)

Polarised e - source: GaAs crystals are very sensitive  need UHV (< Torr) static source: medium emittance / excellent vacuum RF-gun: excellent emittance / good vacuum LC baseline design: static source + damping ring New developments:  improve emittance of static source: SLAC / KEK  improve vacuum of RF-guns: FermiLab  more robust crystal (chalcopyrite): PITZ II (?)

Conventional e + source: NLC baseline design high power needs 3 targets +1 spare

Polarised e + source: TESLA baseline design: Undulator based source Idea by Balakin and Michailichenko (1979)

Proof-of-principle Test-experiment at the SLC FFTB beam line joint experiment between JLC / NLC / TESLA

The Helical Undulator rotating magnetic field creates circularly polarised photons prototype of TESLA undulator E166 prototype Ø 0.89 mm

The Helical Undulator rotating magnetic field creates circularly polarised photons E166 LC similar spectrum much smaller power

Positron Production pair production on 0.5 X 0 Ti-W alloy target polarised photons  polarised positrons 100 % polarised photons E166:  -spec. x  -pol. x  pair x e + -pol. x capture prob. (LC only)

Experimental Setup

Positron Polarimeter

Positron Spectrometer select positron energy for polarisation analysis includes “capture prob.“

Transmission Polarimeter Positron beam not collimated  conventional polarimeter methods fail Solution: transmission polarimeter 1 st step: convert e +   (bremsstrahlung) 2 nd step: measure  -Pol in transmission

Conversion e +  

Transmission Polarimeter Positron beam not collimated  transmission polarimeter

Transmission Polarimeter

Photon Calorimeter array of 16 CsI crystals crystalsDresden + SLAC photodiodesDresden preampSLAC receiverU Mass ADCsSLAC (SLD) mechanicsHU

Experimental Setup

Expected Sensitivity

E166 Collaboration Undulator based production of polarised positrons 45 Collaborators / 15 Institutions Brunel CERN Cornell DESY Durham Thomas Jefferson Lab HU-Berlin KEK Princeton South Carlolina SLAC Tel Aviv Tokyo Metropoliten Tennessee Waseda

E166 Status Conditionally approved in June 2003 by SLAC test-run in Feb need to demonstrate tolerable background levels full run in early 2005 measure energy spectrum and polarisation of undulator photons and positrons Summer 2005 conversion of SLC into XFEL

Our Contribution: DESY HH  polarimeter concept  analyzing magnets  Monte Carlo simulation DESY Z + Humboldt  CsI calorimeter  Monte Carlo simulation  data analysis Peter Schüler Vahagn Gharibyan Klaus Flöttmann Ties Behnke Norbert Meyners Roman Pöschl Hermann Kolanoski Achim Stahl Sabine Riemann Klaus Mönig Karim Laihem Thomas Lohse Nikolaj Pavel Michael Jablonski Thomas Schweizer

Conclusions Physics case for positron polarisation:  long. polarisation: strong physics case  trans. polarisation: unclear Polarimetry:  achievable precision 0.5 … 0.05 % ?  before IP / After IP / Both ?  expreimental improvements ? Sources:  electrons: good perspective (90 %)  positrons: undulators better than conventional demonstrate & develop

the end