B. Barbara, R. Giraud, I. Chiorescu*, W. Wernsdorfer, Lab. Louis Néel, CNRS, Grenoble. Collaborations with other groups: D. Mailly (Marcoussis) D. Gatteschi.

Slides:



Advertisements
Similar presentations
Some New Geometric Phase Effects in Mn 12 Variants Jonathan Friedman Eduardo H. da Silva Neto Michael Foss-Feig Amherst College Funding: NSF, Research.
Advertisements

Zero-Phonon Line: transition without creation or destruction of phonons Phonon Wing: at T = 0 K, creation of one or more phonons 7. Optical Spectroscopy.
Probing Superconductors using Point Contact Andreev Reflection Pratap Raychaudhuri Tata Institute of Fundamental Research Mumbai Collaborators: Gap anisotropy.
Dynamical response of nanoconductors: the example of the quantum RC circuit Christophe Mora Collaboration with Audrey Cottet, Takis Kontos, Michele Filippone,
Nanomagnetism: from atomic clusters to molecules and ions. First microwave experiments in the quantum regime. PhD students L. Thomas (Versailles, IBM),
. Absorption of microwaves  Max ~ 5 s -1 W. Wernsdorfer et al, EPL (2003)
Dynamics of the nuclear spin bath in molecular nanomagnets: a test for decoherence Andrea Morello Kamerlingh Onnes Laboratory Leiden University UBC Physics.
Dynamics and thermodynamics of quantum spins at low temperature Andrea Morello Kamerlingh Onnes Laboratory Leiden University UBC Physics & Astronomy TRIUMF.
Dilute anisotropic dipolar systems as random field Ising ferromagnets In collaboration with: Philip Stamp Nicolas Laflorencie Moshe Schechter University.
 From a single molecule to an ensemble of molecules at T ~0 : Both tunneling rate and decoherence increase  LZ probability: P LZ = 1 – exp[-  (  /ħ)
Quantum phase transitions in anisotropic dipolar magnets In collaboration with: Philip Stamp, Nicolas laflorencie Moshe Schechter University of British.
Stephen Hill, Saiti Datta and Sanhita Ghosh, NHMFL and Florida State University In collaboration with: Enrique del Barco, U. Central Florida; Fernando.
Initial goal: 70’s: Search for « macroscopic » quantum tunneling in magnetism Measurements on « narrow domain walls », ensemble of nanoparticles… Outline.
Breakdown of the adiabatic approximation in low-dimensional gapless systems Anatoli Polkovnikov, Boston University Vladimir Gritsev Harvard University.
Chaos and interactions in nano-size metallic grains: the competition between superconductivity and ferromagnetism Yoram Alhassid (Yale) Introduction Universal.
PCE STAMP Physics & Astronomy UBC Vancouver Pacific Institute for Theoretical Physics QUANTUM GLASSES Talk given at 99 th Stat Mech meeting, Rutgers, 10.
QUANTUM SPIN DYNAMICS OF RARE-EARTHS IONS B. Barbara, W. Wernsdorfer, E. Bonet, L. Thomas (IBM), I. Chiorescu (FSU), R. Giraud (LPN) Laboratory Louis Néel,
Dilute anisotropic dipolar systems as random field Ising ferromagnets In collaboration with: Philip Stamp, Nicolas Laflorencie Moshe Schechter University.
Low temperature universality in disordered solids In collaboration with: Philip Stamp (UBC) Alejandro Gaita-Arino (UBC) Moshe Schechter Gaita-Arino and.
Wittenberg 2: Tunneling Spectroscopy
2002 London NIRT: Fe 8 EPR linewidth data M S dependence of Gaussian widths is due to D-strainM S dependence of Gaussian widths is due to D-strain Energies.
Spin Tunneling and Inversion Symmetry E NRIQUE DEL B ARCO Department of Physics – UCF Orlando QCPS II Vancouver.
Nuclear spin irreversible dynamics in crystals of magnetic molecules Alexander Burin Department of Chemistry, Tulane University.
Coherent Manipulation and Decoherence of S=10 Fe8 Single- Molecule Magnets Susumu Takahashi Physics Department University of California Santa Barbara S.
Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus.
Introduction to Single Molecular Magnet
Magnetic properties of a frustrated nickel cluster with a butterfly structure Introduction Crystal structure Magnetic susceptibility High field magnetization.
2002 Agilent Technologies Europhysics Prize Lecture on Bernard Barbara, L. Néel Lab, Grenoble, France Jonathan R. Friedman, Amherst College, Amherst, MA,
Reversing chaos Boris Fine Skolkovo Institute of Science and Technology University of Heidelberg.
Internal Degrees of Freedom and Quantum Tunneling of the Magnetization in Single-Molecule Magnets E NRIQUE DEL B ARCO Department of Physics – UCF Orlando.
Experimental Approach to Macroscopic Quantum Tunneling of Magnetization in Single Domain Nanoparticles H. Mamiya, I. Nakatani, T. Furubayashi Nanomaterials.
F. Branzoli ¶, P. Carretta ¶, M. Filibian ¶, S. Klytaksaya ‡ and M. Ruben ‡ ¶ Department of Physics "A.Volta", University of Pavia-CNISM, Via Bassi 6,
Dynamics of phase transitions in ion traps A. Retzker, A. Del Campo, M. Plenio, G. Morigi and G. De Chiara Quantum Engineering of States and Devices: Theory.
Dynamics of the nuclear spin bath in molecular nanomagnets: a test for decoherence Andrea Morello Kamerlingh Onnes Laboratory Leiden University UBC Physics.
Physics 452 Quantum mechanics II Winter 2012 Karine Chesnel.
Magnetization Process of Molecular Magnet in ultra-fast sweeping magnetic fields 1. Introduction to High Field Lab. in Okayama 2. Ultra-fast sweeping magnetic.
Spin dynamics in Ho 2-x Y x Sn 2 O 7 : from the spin ice to the single ion magnet G. Prando 1, P. Carretta 1, S.R. Giblin 2, J. Lago 1, S. Pin 3, P. Ghigna.
The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

  Satyendra Prakash Pal DEPARTMENT OF PHYSICAL SCIENCES
Macroscopic quantum effects generated by the acoustic wave in molecular magnet 김 광 희 ( 세종대학교 ) Acknowledgements E. M. Chudnovksy (City Univ. of New York,
Quantum response in dissipative environments University of Tokyo S. Miyashita 5 Nov Linear Response 50 Equilibrium & NE response collaborators: Akira.
Microscopic origin of the adiabatic change of the magnetization Hans De Raedt Applied Physics-Computational Physics, Materials Science Centre, University.
13. Extended Ensemble Methods. Slow Dynamics at First- Order Phase Transition At first-order phase transition, the longest time scale is controlled by.
Quasi-1D antiferromagnets in a magnetic field a DMRG study Institute of Theoretical Physics University of Lausanne Switzerland G. Fath.
Single Molecular Magnets
M. Ueda, T. Yamasaki, and S. Maegawa Kyoto University Magnetic resonance of Fe8 at low temperatures in the transverse field.
Superconductivity with T c up to 4.5 K 3d 6 3d 5 Crystal field splitting Low-spin state:
O AK R IDGE N ATIONAL L ABORATORY U. S. D EPARTMENT OF E NERGY Electronically smectic-like phase in a nearly half-doped manganite J. A. Fernandez-Baca.
Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications.
Slow Dynamics of Magnetic Nanoparticle Systems: Memory effects P. E. Jönsson, M. Sasaki and H. Takayama ISSP, Tokyo University Co-workers: H. Mamiya and.
Universität Karlsruhe Phys. Rev. Lett. 97, (2006)
NMR study of a mixed-metal molecular magnet Yutaka FUJII (University of Fukui) Contents  Introduction (Magnetic properties)  Experimental results  1.
Spin-lattice relaxation of individual lanthanide ions via quantum tunneling Fernando LUIS Orlando December 20 th 2010 Quantum Coherent Properties of Spins-III.
NMR Studies of nanoscale molecular magnets Y. Furukawa Y. Fujiyoshi S. Kawakami K. Kumagai F. Borsa P. Kogerler Hokkaido University (Japan) Pavia University.
Dynamics of novel molecular magnets V-ring and rare earth compounds Okayama Univ. H. Nojiri Introduction Magnetization step in V-rectangular ring Short.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in Quasi-two-dimensional Frustrated Magnet M. A.
Evolution of the orbital Peierls state with doping
NTNU 2011 Dimer-superfluid phase in the attractive Extended Bose-Hubbard model with three-body constraint Kwai-Kong Ng Department of Physics Tunghai University,
The University of Tokyo Seiji Miyashita
FAM Mirko Rehmann March
Quantum mechanics II Winter 2011
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Alternating Antisymmetric Interaction in Nanoscale Iron Ring
Magnetization processes in V15
Stephen Hill, Rachel Edwards Nuria Aliaga-Alcalde and George Christou
Quantum tunneling by Hyperfine interaction Origin of adiabatic change of the magnetization and the symmetry of the molecules Seiji Miyashita, Hans de.
« Chaînes-Aimants » et «Molécules-Aimants » dans les Oxydes
Spin-triplet molecule inside carbon nanotube
Hiroyuki Nojiri, Department of Physics, Okayama University
Presentation transcript:

B. Barbara, R. Giraud, I. Chiorescu*, W. Wernsdorfer, Lab. Louis Néel, CNRS, Grenoble. Collaborations with other groups: D. Mailly (Marcoussis) D. Gatteschi (Florence) A. Müller (Bielefeld) G. Christou (Gainsville) A.M. Tkachuk (S t Petersburg) S. Miyashita (Tokyo) * Present adress Delft University of Technology Quantum Magnetism: from large spin molecules to single ions

Magnetization reversal in nanoparticles Large (submicrometer), Small (nanometer) Magnetic tunneling in molecules Large spin molecules (Mn 12 -ac, Fe 8 ) Tunneling, Berry phases, Quantum dynamics Low spin molecules (V 15 ) Adiabatic LZS with and without dissipation Case of nearly isolated Ions Rare-earth ions: (Ho 3+ in Y Ho LiF 4, Y Ho Cu 2 Si 2 ) Entangled electro-nuclear states, co-tunneling OUTLINE

Particles from micrometers to 100 nanometers Obtained by: Lithography, Electro-deposition Measurements: Micro-Squids 100 nm 50 nm x 1  m 1  m x 2  m Small ellipseLarge ellipseNanowire MULTI – DOMAIN: nucleation, pinning, propagation and annihilation of domain walls SINGLE - DOMAIN Single Nucleation Curling

Nanometer scale NanoparticleCluster 20 nm3 nm1 nm2 nm Magnetic ProteinSingle Molecule 50S =

The molecules are regularly arranged in the crystal

Mn(IV) S=3/2 Mn(III) S=2 Total Spin =10 Mn12acetate

Barrier in Zero Field H= - DS z 2 - BS z 4 - E(S S - 2 ) - C(S S - 4 ) + g  B S x H x Thermally activated tunneling Multi-Orbach process Thermal Activation Mn 12 -ac : D = 0.56 K, E = 5 mK, B = 1.18 mK, C = K, Fe 8 : D = 0.23 K, E = - 47 mK, B = 0.03 mK, Tunnel splitting 

Resonant Tunneling in Mn 12 -ac in Large // Fields Top of the barrier Ground-state Avoided level crossing Energy scheme in B// H= - DS z 2 - BS z 4 - E(S S - 2 ) - C(S S - 4 ) + g  B SH z - Landau-Zener Mechanism - Resonance fields

Dynamics: Landau-Zener Transition (isolated system) Tunneling Probability : General result for a single level crossing Solution of the Schrödinger equation L. Landau, Phys. Z. Sowjetunion 2, 46 (1932); C. Zener, Proc. R. Soc. London, Ser. A 137, 696, (1932); E.C.G. Stückelberg, Helv. Phys. Acta 5, 369 (1932). S. Miyashita, J. Phys. Soc. Jpn. 64, 3207 (1995). P=1 – exp[-  (  /ħ) 2 /  c] where c = dH/dt P ~1 when  pass  c  ~  os  = ħ/  

Resonance Width and Tunnel Window Effects of Magnetic couplings and Hyperfine Interactions Chiorescu et al, PRL, 83, 947 (1999) Barbara et al, J. Phys. Jpn. 69, 383 (2000) Kent et al, EPL, 49, 521 (2000) Inhomogeneous broadening of Two resonances: Dipolar fields… Data points and calculated linesLevel Scheme Homogeneous broadening of nuclear spins: Tunnel window Wernsdorfer et al, PRL (1999) Prokofiev and Stamp (1998 )

Measured and Calculated Resonance Fields above 0.4 K QT TA Three Regimes Barbara et al, ICM Warsaw (1994); JMMM , 1891 (1995); JMMM-200, (1999) Paulsen, et al, JMMM , 379 (1995); NATO, Appl. Sci. 301, Kluwer (1995) TAQT T c-o T blocking

Scaling of quantum dynamics of Mn 12 -ac M/M s = f (-t/  (H,T) ) Strong deviations from exponential to square root relaxation below the cross-over temperature (~2K)  ~ 1 to  ~ 0.5 Prokofiev, Stamp, PRL 80, 5794 (1998) Thomas et al, J. Low Temp. Phys. 113 (1998); PRL 83, 298 (1999). Weak tunnel splitting distribution preserves square-root relaxation (  and t are separable variables)

In a Transverse Field Chiorescu et al, PRL, 83, 947 (1999); Barbara et al, J. Phys. Jpn. 69, 383 (2000) Calculated Energy Spectrum Measured relaxation

Quantum phase interference (Berry phase) in Fe 8 Wernsdorfer and Sessoli, Science 284, 133 (1999)  2 ~  -1 Prokofiev and Stamp PRL 80, 5794 (1998)

Parity Effect: Odd vs. Even Resonances W. Wernsdorfer and R. Sessoli, Science, 1999.

V 15 : a Gapped Spin ½ Molecule (D H =2 15 ) Dzyaloshinsky-Moriya interactions: H DM = -  D ij S i xS j The Multi-Spin Character of the Molecule (15 spins) + Time Reversal Symmetry  = 0 (Kramers Theorem) Exchange interactions: Antiferromagnetic ~ several 10 2 K Müller, Döring, Angew. Chem. Intl. Engl., 27, 171 (1988) Anisotropy of g-factor: ~ 0.6% Ajiro et al, J..Low. Temp. Phys. to appear (2003) Barra et al,J. Am. Chem. Soc. 114, 8509 (1992)

More details on the D-M gap of multi-spin systems Calculation of energy spectra with antisymmetrical interactions: H = J  S i S j -  ij S ix S jz - g  B B z  S iz  ij =  ji  =0 (2 Kramers doublets)  ij ≠  ji  ≠ 0 (2 pairs of singlets) Miyashita, Nagaosa, Prog. Theo. Phys.106, 533 (2001). Barbara et al, cond-mat / v1 and Prog. Theo. Phys. Jpn, Supp. 145, 357 (2002).

LZS transition at finite Temperature At low sweeping rate / strong coupling to the cryostat (  small) n 1 /n 2 = exp (  /kTs) Phonon-bath  bottleneck model: h    ±  Abragam, Bleaney, 1970; Chiorescu et al, M(t)/M(  ) = x(t) is given by -t/  B =x(t) – x(0) + ln [(x(t) –1) /[(x(0)-1)]  Bott =(  /  2 )th 2 (  /2kT ) Nuclear spin-bath  level broadening:  30mK (Stamp, Prokofiev, 1998). S. Miyashita, J. Phys. Soc. Jpn. 64, 3207 (1995); V.V. Dobrovitski and A.K. Zvezdin, Euro. Phys. Lett. 38, 377 (1997); L. Gunther, Euro. Phys. Lett. 39, 1 (1997); G. Rose and P.C.E. Stamp, Low Temp. Phys. 113, 1153 (1999); M. Leuenberger and D. Loss, Phys. Rev. B 61, (2000); … Spin-phonons transitions (dissipation)  Irreversible M(H) n1n1 n2n2

Low sweeping rate / Strong coupling to the cryostat « Non-Isolated V 15 » : A two-level system with dissipation Butterfly hysteresis loop LZS transition at Finite Temperature (dissipative)  1 ~  botl >  meas Hysteresis (≠Orbach process). Measured Calculated Chiorescu et al, PRL 84, 3454 (2000) M(H): Irreversible Equilibrium (Reversible) M(H)=M s th{(  2 +H 2 ) 1/2 /2kT}

Landau-Zener transition at « Zero Kelvin » Fast sweeping rate / Weak coupling to the cryostat (  large).... But out of equilibrium. n 1 /n 2 = exp (  /kTs)   Ground-State  M(H) Nuclear Spin-Bath  Level broadening  30mK  Overlap near zero field. No spin-phonon transition (no dissipation)  Reversible M(H)... n1n1 n2n2 (Stamp, Prokofiev, 1998).   Bott =(  /  2 )th 2 (  /2kT) >>  meas

  80 mK Adiabatic Landau-Zener Spin Rotation « Isolated V 15 » : A two-level system « without dissipation » M(H) = dE(H)/dH= (1/2)(g  B ) 2 H/[(  2 +(g  B H) 2 )] 1/2 Fast sweeping rate / Weak coupling to the cryostat V 15 M(H) : Reversible and out of equilibrium Chiorescu et al, submitted to PRB, Cond-mat / v1 Barbara et al, Prog. Theo. Phys. Jpn, Supp. 145, 357 (2002),   80 mK Adiabatic Landau-Zener Spin Rotation

Relaxation Experiments Outside and Within the Mixing Region (   Fit of M(t) to the Bottleneck model   B (B,T). Phonon bath Barbara et al, Prog. Theo. Phys. Jpn, Supp. 145, 357 (2002). Inside  : Outside  : Fit not good;  B << calculated value Good fit;  B (B,T) ~ calculated value Spin-bath (nuclear spins) Phonon bath

A new direction…Mesoscopic Physics of Rare-earth Ions : Ho 3+ in Y Ho LiF 4 Entangled electro-nuclear states, co-tunneling,… Dipolar interactions between different Ho 3+ a few ~ mT H CF-Z = -B 2 0 O B 4 0 O B 4 4 O B 6 0 O B 6 4 O g J  B JH B l m : acurately determined by high resolution optical spectroscopy Sh. Gifeisman et al, Opt. Spect. (USSR) 44, 68 (1978); N.I. Agladze et al, PRL, 66, 477 (1991) Tetragonal symmetry (Ho in S4) J = L+S = 8; g J =5/4

CF energy barriers: a comparizon between Mn 12-ac and Ho 3+ Short-cuts Lowest energy levels Giraud et al, PRL, 87, (2001) ground-state: Ising doublet Mn 12 -ac S = 10 D = 0.56 K, E ~ 5 mK, B = 1.18 mK, C = mK Ho 3+ J = 8 B20 = K, B40 = mK, B44 = mK, B60 =-8.41mK, B64 = mK   

Hysteresis loop of Ho 3+ ions in YLiF 4 Thomas et al, Nature (1996) Giraud et al, PRL, 87, (2001) Steps at Bn = 450.n (mT) Steps at B n = 23.n (mT) Tunneling of Mn 12 -ac Molecules Tunneling of Ho 3+ ion Comparison with Mn12-ac

Ising CF Ground-state + Strong Hyperfine Interactions H = H CF-Z + A.I.J Avoided Level Crossings between |  , I z  and |  +, I z ’  if  I= (I z -I z ’ )/2= odd -7/2 7/2 5/2 3/2 -7/2 Co-Tunneling of Electronic and Nuclear Spins: Electro-nuclear entanglement

Acceleration of slow quantum dynamics associated with co-tunneling of I and J in a transverse field: Fast increase of the splitting of entangled electro-nuclear states of single Ho 3+ ions. dB/dt = 0.55mT/s dB/dt ~ 1 mT/s

In fast ssweeping field Two différent relaxation regimes LiY 1-x Ho x F 4 (x~0.1% at.) Slow ( ~ 1 mT/s) Fast ( ~ 1 T/s) Thermodynamical and thermal equilibrium Out of thermodynamical equilibrium

Fast sweeping rate... a different regime 50 mK 0.3 T/s Giraud et al, PRL 87, (2001) Additional steps at fields: B n = (23/2).n (mT) Tunneling, Co-tunneling and Cross-spin reversal of Ho 3+ pairs 50 mK 0.3 T/s. Hysteresis from bottleneck (  B ) and barrier (  1 ) T Bl ~ 200 mK > Tmea= 50mK. Cross-spin relaxations  2 << Time-scale  <<  1 = C.exp(10/T) (Orbach) -½, I z ½, I’ z

Single ion tunneling Co-tunneling of two ions Cross-tunneling Unambiguous observation of different types of tunneling Ac-susceptibility at high temperature R. Giraud and B. Barbara, to be published

Exchange-biased tunnelling between two molecules (Mn 4 dimer) W. Wernsdorfer et al, Nature 416, 406 (2002) S=9 S=0 For a dimer

 +>  -> A B C A A’ B C Energy H > 0 H < 0  + +>  - ->  + -> +  - +>  + -> -  - +> Bias tunneling and co-tunneling Simple 2-spins model:singlet / triplet B. Barbara, News and Views, Nature to appear

Last new direction: Effect of free electrons on tunneling … Ho 3+ in YRu 2 Si 2 (Hiro Susuki, Tsukuba)

Ho in YRu 2 Si 2 (Same matrix as in CeRu 2 Si 2 ) Non-trivial behaviour when v decreases

Ho in YRu 2 Si 2 (Same matrix as in CeRu 2 Si 2 ) Continuous M(H)… and jumps at well defined fields !

Tunneling seems possible, in the presence of free electrons ! Ho 3+ in YRu 2 Si 2 Hiro Susuki (Tsukuba) Y 1-  Ho  Ru 2 Si 2  ~ 0.1% Same hyperfine constant. Tunneling of electro- nuclear states in a metal…simple cross-spin relaxations… Y Ho LiF 4

Conclusion Evidence for tunneling of single ions of rare-earth Ho 3+ Avoided level crossings result from crystal field and hyperfine interactions Entangled electro-nuclear states Ho 3+, Mn 4 pairs: Cross-spin and Spin-phonon transitions co-tunneling Tunneling in metals ? Ho 3+ * Adiabatic LZS transition with or without dissipation. * Multi-spin molecule spin ½ gap V 15 Resolved resonance lines Quantum classical Quantum Dynamics Mn 12 -ac Berry Phases, Quantum Dynamics

Hysteresis loop in very slow applied field

Conclusion Evidence for tunneling of single ions of rare-earth Ho 3+ Avoided level crossings result from crystal field and hyperfine interactions Entangled electro-nuclear states Ho 3+, Mn 4 pairs: Cross-spin and Spin-phonon transitions co-tunneling Ho 3+ * Adiabatic LZS transition with or without dissipation. * Multi-spin molecule spin ½ gap V 15 Resolved resonance lines Quantum classical Quantum Dynamics Mn 12 -ac Berry Phases, Quantum Dynamics

Collaborations with other groups: D. Mailly (Bagneux) A. Caneschi, R. Sessoli, D. Gatteschi (Florence) A. Müller, H. Bögge (Bielefeld) G. Christou (Gainsville)

Evidence for a Mn 12 -like hysteresis loop Steps at B n = 23 n (mT) Tunneling of Ho 3+ ions Giraud et al, PRL, 87, (2001)

Exchange-biased quantum tunnelling between two molecules (Mn 4 dimer) W. Wernsdorfer et al, Nature 416, 406 (2002)

Collaborations with other groups: D. Mailly (Bagneux) A. Caneschi, R. Sessoli, D. Gatteschi (Florence) A. Müller, H. Bögge (Bielefeld) G. Christou (Gainsville) A.M. Tkachuk (St Petersburg)

Origin of the Gap in the Spin ½ V 15 Molecule: The Multi-Spin Character of the Molecule. Time Reversal Symmetry  =0 (Kramers Theorem) V 15 : 15 spins ½ with AF couplings Hilbert Space Dimension D H =2 15 Ground-state: spin ½ with fourfold degeneracy (two doublets). Dzyaloshinsky-Moriya interactions: H DM = -  D ij S i xS j J=2.445 K  = 80mK, if D=50 mK (D~J  g /g~80mK)

(SMM)

Tunnelling in a dimer of Mn 4 molecule S=S 1 +S 2 with S 1 = S 2 = 9/2 H = H 1 + H 2 + JS 1 S 2 H 1 and H 2 : single spin Hamiltonians (2S 1 +1)(2S 2 +2) = 100, instead of 10 for single Mn 4 molecule or 21 (10 8 ) in single Mn 12 molecule

Selection rules: Tunneling for odd n also Mn 12 -ac Barbara et al JMMM-200, 1999.

Increasing the sweeping rate: broader hysteresis loop and additional steps Sample temperature increases. Tunneling relaxation decreases. __ 50 mK

Low energy spectrum of a pair of Ho 3+ ions (including nuclear spins) Single Ho 3+ ions B n = 23.n (mT) Pair of Ho 3+ ions B n = (23/2).n (mT) (3x8) 2 = 576 states

Resonant Tunneling in Mn 12 -ac in Large // Fields Chiorescu et al, PRL, 83, 947 (1999); Kent et al, EPL, 49, 521 (2000) Barbara et al, JMMM-200, « Magnetism beyond 2000 » (1999). Top of the barrier Ground-state Avoided level crossing Energy scheme in B// Hysteresis loop in B//

Outline Large spin molecules ( Mn 12 -ac, Fe 8 ) Tunneling, Berry phases, Quantum dynamics Low spin molecules ( V 15 ) Adiabatic LZS with and without dissipation Rare-earth ions: ( Ho 3+ in Y Ho LiF 4 ) Entangled electro-nuclear states, co-tunneling

Measured Tunnel Splitting experimental calculated with D = -0.29, E = 0.046, C = -2.9x10 -5 K W. Wernsdorfer and R. Sessoli, Science, 1999.

Crossover From Classical to Quantum Regime, Mn12-ac Activated Tunneling Measured ( ) and Calculated ( ) Resonance Fields Barbara et al, JMMM , 1891 (1995) and J. Phys. Jpn. 69, 383 (2000) Classical Thermal Activation T blocking Ground-state Tunneling T c-o All the resonances tunneling

Quantum Tunneling in Mn 12 -ac and resonant tunneling on oriented grains, powder Decreasing of relaxation near zero field Log  Barbara et al, ICM’94, JMMM, , 1824(1995) Paulsen et al,Proc., QTM’94, NATO ASI, Vol 301, 189, (1995) Barbara et al, ICM’94, JMMM , 1824 (1995) Friedman et al, PRL, 76, 20 (1996) TCTC QT TA

Resonant Tunneling of Magnetization in Mn 12 -ac Single Crystal Hysertesis loop Magnetic relaxation L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and B. Barbara Nature, 383, 145 (1996).

Resonant Tunneling in Mn 12 -ac in Large // Fields Chiorescu et al, PRL, 83, 947 (1999); Kent et al, EPL, 49, 521 (2000) Barbara et al, JMMM-200, « Magnetism beyond 2000 » (1999). Hysteresis loop in B//

Nature of the ground-state of the V 15 molecule Diagonalization of the 15-Spin ½ Hamiltoninan H =  J ij S i S j (I. Tupitsyn, H. de Raedt) 200 calculated levels. The 8 levels lowest levels frustrated 3-spins ½ triangle. Measurements of M(H) and  (T) confirm this picture. Effective hamiltoninan: H = |J |  (S 1 S 2 + S 2 S 3 + S 3 S 4 ) – g  B B(S 1 + S 2 + S 3 )

M(H) (Measured) Lowes Energy Levels (Calculated) Chiorescu et al, JMMM, 221, 103 (2000); JAP 87, 5496 (2000). Barbara et al, Prog. Theo. Phys. Jpn, Supp. 145, 357 (2002); cond/mat v1. S=1/2 S=3/2 S= -1/2 S=1/2 S=1/2 S=3/2 Spin reversal within the « three spins » molecule V 15, at equilibrium (no barrier) A model system for the adiabatic Landau-Zener model : two limiting cases

The Low spin Molecule V 15 S=1/2, D H =2 15 Anisotropy of g-factor: ~ 0.6% Ajiro et al, J..Low. Temp. Phys. to appear (2003) Barra et al,J. Am. Chem. Soc. 114, 8509 (1992) Exchange interactions: Antiferromagnetic ~ several 10 2 K Müller, Döring, Angew. Chem. Intl. Engl., 27, 171 (1988)