Non-LTE studies of A-type supergiants Norbert Przybilla K. Butler (Munich), M. Firnstein & F. Schiller (ex-Bamberg)

Slides:



Advertisements
Similar presentations
Surface CNO abundance and Pulsation of Blue Subergiants tell about internal mixing and winds of massive stars Hideyuki Saio (Tohoku University, Sendai)
Advertisements

Line Profiles Note - Figure obtained from
Estimate of physical parameters of molecular clouds Observables: T MB (or F ν ), ν, Ω S Unknowns: V, T K, N X, M H 2, n H 2 –V velocity field –T K kinetic.
T.P. Idiart  and J.A. de Freitas Pacheco   Universidade de São Paulo (Brasil)  Observatoire de la Côte d’Azur (France) Introduction Elliptical galaxies.
Stellar Atmospheres: Hydrostatic Equilibrium 1 Hydrostatic Equilibrium Particle conservation.
The Standard Solar Model and Its Evolution Marc Pinsonneault Ohio State University Collaborators: Larry Capuder Scott Gaudi.
Martin Asplund Galactic archeology & planet formation.
Martin Asplund, Paul Barklem, Andrey Belyaev, Maria Bergemann,
August 22, 2006IAU Symposium 239 Observing Convection in Stellar Atmospheres John Landstreet London, Canada.
Fitting X-ray Spectra with Imperfect Models Nancy S. Brickhouse Harvard-Smithsonian Center for Astrophysics Acknowledgments to Randall Smith and Adam Foster.
Stellar Continua How do we measure stellar continua? How precisely can we measure them? What are the units? What can we learn from the continuum? –Temperature.
The Abundance of Free Oxygen Atoms in the Local ISM from Absorption Lines Edward B. Jenkins Princeton University Observatory.
Reaching the 1% accuracy level on stellar mass and radius determinations from asteroseismology Valerie Van Grootel (University of Liege) S. Charpinet (IRAP.
ECLIPSING BINARIES IN OPEN CLUSTERS John Southworth Dr Pierre Maxted Dr Barry Smalley Astrophysics Group Keele University.
Detailed Plasma and Fluorescence Diagnostics of a Stellar X-Ray Flare Paola Testa (1) Fabio Reale (2), Jeremy Drake (3), Barbara Ercolano (3), David Huenemoerder.
3-D Simulations of Magnetized Super Bubbles J. M. Stil N. D. Wityk R. Ouyed A. R. Taylor Department of Physics and Astronomy, The University of Calgary,
Near-Infrared Spectral Properties of Metal-Poor Red Supergiants Valentin D. Ivanov (ESO) Collaborators: Marcia J. Rieke, A. Alonso- Herrero, Danielle Alloin.
Stars science questions Origin of the Elements Mass Loss, Enrichment High Mass Stars Binary Stars.
Compilation of stellar fundamental parameters from literature : high quality observations + primary methods Calibration stars for astrophysical parametrization.
Marc Pinsonneault (OSU).  New Era in Astronomy  Seismology  Large Surveys  We can now measure things which have been assumed in stellar modeling 
F-type Stars “Stars in transition”
S PECTRAL LINE ANALYSIS : LOG G Giovanni Catanzaro INAF - Osservatorio Astrofisico di Catania 9 april 2013 Spring School of Spectroscopic Data Analyses.
Spectroscopy in Stellar Astrophysics Alberto Rebassa Mansergas.
Stellar Atmospheres: Non-LTE Rate Equations 1 The non-LTE Rate Equations Statistical equations.
The study of evolutionary changes in intermediate mass magnetic CP stars across the HR diagram Evgeny Semenko Special Astrophysical Observatory of the.
Extragalactic stellar astronomy with the brightest stars in the universe Rolf Kudritzki, Fabio Bresolin, Miguel Urbaneja.
Non-LTE in Stars The Sun Early-type stars Other spectral types.
Topics at the DRS Late stages stellar evolution White dwarfs
Atomic Spectroscopy for Space Applications: Galactic Evolution l M. P. Ruffoni, J. C. Pickering, G. Nave, C. Allende-Prieto.
Model atmospheres for Red Giant Stars Bertrand Plez GRAAL, Université de Montpellier 2 RED GIANTS AS PROBES OF THE STRUCTURE AND EVOLUTION OF THE MILKY.
Molecular Hydrogen Emission from Protoplanetary Disks Hideko Nomura (Kobe Univ.), Tom Millar (UMIST) Modeling the structure, chemistry and appearance of.
The chemical inventory of HH1 Teresa Giannini, Brunella Nisini, Simone Antoniucci, Dario Lorenzetti, Juan Alcala’, Francesca Bacciotti, Sara Bonito, Linda.
Evolutionary Population Synthesis models Divakara Mayya INAOEhttp:// Advanced Lectures on Galaxies (2008 INAOE): Chapter 4.
Limits on Solar CNO From Session 13 IAU - XXVIII GA Aldo Serenelli Institute of Space Sciences (CSIC-IEEC) Bellaterra, Spain Beijing.
Chapter 14 – Chemical Analysis Review of curves of growth How does line strength depend on excitation potential, ionization potential, atmospheric parameters.
Class Goals Familiarity with basic terms and definitions Physical insight for conditions, parameters, phenomena in stellar atmospheres Appreciation of.
Plasma diagnostics using spectroscopic techniques
The Properties of Stars
Ch 8: Stars & the H-R Diagram  Nick Devereux 2006 Revised 9/12/2012.
Abundance Patterns to Probe Stellar Nucleosynthesis and Chemical Evolution Francesca Primas.
The Universe is expanding The Universe is filled with radiation The Early Universe was Hot & Dense  The Early Universe was a Cosmic Nuclear Reactor!
A cosmic abundance standard Fernanda Nieva from massive stars in the Solar Neighborhood Norbert Przybilla (Bamberg-Erlangen) & Keith Butler (LMU)
1 Arcturus Exposed: Non-LTE Analysis of Carbon and Oxygen Abundances in Arcturus By: Jayme Derrah Supervisor: Dr. Ian Short AUPAC 2007.
1 Observations of Convection in A-type Stars Barry Smalley Keele University Staffordshire United Kingdom.
Stars Classifying stars: H-R diagram Vogt-Russell theorem Mass-luminosity relation Evolution on the HR diagram.
Chapter 15 – Measuring Pressure (con’t) Temperature spans a factor of 10 or so from M to O stars Pressure/luminosity spans six orders of magnitude from.
Nov. 1, Continuing to mine the H-R diagram: Spectral Types Recall, the H-R diagram gives the range of Luminosty, L, and radius, R, of stars as dependent.
Stellar Continua How do we measure stellar continua?
Monitoring of the Yellow Hypergiant Rho Cas: Results of the High-Resolution Spectroscopy During V.G. Klochkova (SAO RAS, Nizhnij Arkhyz, Russia)
Automated Fitting of High-Resolution Spectra of HAeBe stars Improving fundamental parameters Jason Grunhut Queen’s University/RMC.
Asteroseismology and the Time Domain Revolution in Astronomy Marc Pinsonneault Ohio State University Collaborators: The APOKASC team Melissa Ness Marie.
Metallicity and age of selected nearby G-K Giants L. Pasquini (ESO) M. Doellinger (ESO-LMU) J. Setiawan (MPIA) A. Hatzes (TLS), A. Weiss (MPA), O. von.
Red Supergiants as Extragalactic Abundance Probes: Establishing the J-Band Technique Zach Gazak Rolf Kudritzki (chair), Josh Barnes, Fabio Bresolin, Ben.
Lecture 8 Optical depth.
Behavior of Spectral Lines – Part II
Julie Hollek and Chris Lindner.  Background on HK II  Stellar Analysis in Reality  Methodology  Results  Future Work Overview.
1 Model Atmosphere Results (Kurucz 1979, ApJS, 40, 1) Kurucz ATLAS LTE code Line Blanketing Models, Spectra Observational Diagnostics.
Neutral hydrogen in the Galaxy. HII regions Orion nebula Triangulum nebula.
FUSE spectroscopy of cool PG1159 Stars Elke Reiff (IAAT) Klaus Werner, Thomas Rauch (IAAT) Jeff Kruk (JHU Baltimore) Lars Koesterke (University of Texas)
Distance Indicators and Peculiar Velocities Status of the 6dFGS V-survey Lachlan Campbell, RSAA/AAO 6dFGS Workshop April 2005.
What the UV SED Can Tell Us About Primitive Galaxies Sally Heap NASA’s Goddard Space Flight Center.
A540 – Stellar Atmospheres Organizational Details Meeting times Textbook Syllabus Projects Homework Topical Presentations Exams Grading Notes.
Lyα Forest Simulation and BAO Detection Lin Qiufan Apr.2 nd, 2015.
Saturn Magnetosphere Plasma Model J. Yoshii, D. Shemansky, X. Liu SET-PSSD 06/26/11.
Observational Signatures of Atmospheric Velocity Fields in Main Sequence Stars F. Kupka 1,3, J. D. Landstreet 2,3, A. Sigut 2,3, C. Bildfell 2, A. Ford.
Netherlands Organisation for Scientific Research High resolution X-ray spectroscopy of the Interstellar Medium (ISM) C. Pinto (SRON), J. S. Kaastra (SRON),
Netherlands Organisation for Scientific Research High-resolution X-ray spectroscopy of the chemical and physical structure of the Interstellar Medium C.
Are WE CORRECTLY Measuring the Star formation in galaxies?
Determining Abundances
CO mass-loss rate of red-supergiants at low metallicity
Presentation transcript:

Non-LTE studies of A-type supergiants Norbert Przybilla K. Butler (Munich), M. Firnstein & F. Schiller (ex-Bamberg)

The Protagonists evolved progeny of OB main-sequence stars T eff : ~ K M: ~ M  L: ~ L  R: ~ R  throughout Local Group Intro A-stars Moscow –

A-stars Moscow – Previous quantitative studies of A-type supergiants Intro Early LTE work Groth (1961), Przybylski (1969), Wolf (1971), Aydin (1972):  Cyg,  Leo Recent LTE work Albayrak (2000), Yuce (2005), Tanriverdi (2013): stellar parameters, elemental abundances (5 objects) Early NLTE work Kudritzki (1973): H+He NLTE atmospheres More recent NLTE studies Venn (1995ab), Venn & Przybilla (2003): stellar parameters, elemental abundances, evolutionary status Takeda (1990ies), Takeda & Takada-Hidai (2000): elemental abundances, evolutionary status Kudritzki et al. (1999): Wind properties, WLR Aufdenberg et al. (2002): stellar parameters (  Cyg) Kudritzki et al. (2003,2008): FGLR

A-stars Moscow – Other studies of A-type supergiants Intro Variability Kaufer et al. (1996, 1997): time-series spectroscopy Moravveji et al. (2012): MOST photometry, asteroseismology (  Ori) Interferometry Aufdenberg et al. (2002): radius (  Cyg) Chesneau et al. (2010): extension H  line-formation region (  Cyg,  Ori) Spectropolarimetry Hubrig et al. (2012): magnetic field in HD92207 Extragalactic studies Multiobject spectroscopy: metallicities, abundance gradients, distance indicators (FGLR), interstellar reddening, DIBs in other galaxies,... review talk by Miguel Urbaneja

Firnstein & Przybilla (2012) High-resolution spectroscopy of Galactic BA-Supergiants Observations A-stars Moscow – High-resolution, high-S/N Echelle spectra: FEROS, UVES, FOCES, CAFE

Diagnostic Problem stellar analyses from interpretation of observation photometry, spectroscopy fundamental stellar parameter: L, M, R atmospheric parameters: T eff, log g, , Y, Z, etc. elemental abundances quantitative spectroscopy via model atmospheres A-stars Moscow –

usually: LTE : L ocal T hermodynamic E quilibrium Saha-Boltzmann-Formulae, gf-values, line broadening Modelling Approaches L imited T remendous E rror non-L imited T remendous E rror hot supergiants: strong radiation field, low densities non-LTE : non-L ocal T hermodynamic E quilibrium rate equations, gf-values, line broadening, detailed level-coupling, zillions of atomic cross-sections Diagnostics A-stars Moscow –

MgII: Przybilla et al. (2001) (Restricted) non-LTE problem transfer equation statistical equilibrium: radiative rates: collisional rates: excitation, ionization, charge exchange, dielectronic recombination, etc. non-local local Diagnostics model atoms... required for many elements/ions A-stars Moscow –

Atomic data  =1 Allen Formula CII Example: collisional excitation by e - -impact replacing approximations by experimental or ab-initio data Schrödinger equation LS-coupling: low-Z Breit-Pauli Hamiltonian Methods: R-matrix/CC approximation MCHF CCC huge amounts of atomic data: OP/IRON Project & own Diagnostics A-stars Moscow –

Przybilla & Butler (2004) NLTE: need for accurate atomic data IR-lines equiv. to Balmer lines as gravity indicators stellar parameters/FGLR Diagnostics H atom: analytical solution except electron collisions: 3-body problem ab-initio data vs. approximations until recently: medium resolution spectroscopy A-stars Moscow –

Przybilla & Butler (2004) NLTE: need for accurate atomic data IR-lines equiv. to Balmer lines as gravity indicators stellar parameters/FGLR Diagnostics H atom: analytical solution except electron collisions: 3-body problem ab-initio data vs. approximations until recently: medium resolution spectroscopy Przybilla & Butler (2004) LTE NLTE: ab-initio NLTE: approximate improved e - -impact excitation x-sections HH HH HH PP PP Br10 Br  Br12 P12 Paschen-Series Brackett-Series Pfund-Series Schiller & Przybilla (2008)  Cyg (A2 Ia) Pf24 A-stars Moscow –

Non-LTE effects b i = ___ n i NLTE n i LTE Non-LTE departure coefficients Diagnostics OI FeII Przybilla et al. (2006) A-stars Moscow – reproduction of observed trends: non-LTE line-strengthening non-LTE line-weakening OI TiII

complication in IR: amplification of NLTE effects NLTE line source function: h <<kT Complications Diagnostics A-stars Moscow – Przybilla et al. (2006) Pressure inversion appears for A-types ~A4 and later in static and hydrodynamic atmospheres extreme sensitivity of line spectra to small variations of parameters

NLTE Diagnostics: Stellar Parameters using robust analysis methodology & comprehensive model atoms ionization equilibria T eff elements: e.g. C I/II, N I/II, O I/II, Mg I/II, Si II/III, S II/III, Fe II/III Δ T eff / T eff ~ 1…2% usually: 5…10% Stark broadened hydrogen lines log g Δ log g ~ 0.05…0.10 (cgs) usually: 0.2 microturbulence, helium abundance, metallicity + other constraints, where available: SED’s, near-IR, … abundances:  log  ~ dex (1  stat.) usually: factor ~2  log  ~ dex (1  sys.) usually: ??? IAU Symposium 224: The A-Star Puzzle Poprad – July 10, 2004 minimising systematics ! Diagnostics fine ruler Przybilla et al. (2006) Przybilla et al. (2000) Firnstein & Przybilla (2012a) A-stars Moscow – Firnstein & Przybilla (2012)

non-LTE: absolute abundances reduced uncertainties Δ log  ~ dex (1  -stat.) ~ 0.10 dex (1  -syst.) reduced systematics typical uncertainties in literature: factor ~2 (1  -stat.) + unknown syst. errors Przybilla et al. (2006) Elemental Abundances neutral ionized NLTE/LTE artifact Diagnostics A-stars Moscow –

Elemental Abundances Przybilla et al. (2006) neutral ionized NLTE/LTE absolute abundances relative to C osmic A bundance S tandard Nieva & Przybilla (2012) HD87737 (A0 Ib) LTE: abundance pattern? - large uncertainties Diagnostics A-stars Moscow –

Elemental Abundances Przybilla et al. (2006) non-LTE: consistency & reduced uncertainties neutral ionized NLTE/LTE absolute abundances relative to C osmic A bundance S tandard Nieva & Przybilla (2012) HD87737 (A0 Ib) Diagnostics no non-LTE abundance “ corrections“ A-stars Moscow –

High-res & High-S/N Przybilla et al. (2006) several 10 4 lines: ~30 elements, 60+ ionization stages complete spectrum synthesis in visual (& near-IR) ~70-90% in NLTE HD92207 (A0 Iae) Diagnostics A-stars Moscow –

Results Revision of functional relationships Spectral type – T eff relationship Firnstein & Przybilla (2012) Colour - T eff relationship + more A-stars Moscow –

Photometric calibrations Results Firnstein & Przybilla (2012)

A-stars Moscow – Results A warning on the use of photometric parameter estimation Firnstein & Przybilla (2012) errors of parameters and abundances can get large > 0.3dex possible spectroscopic photometric

Benchmark spectroscopy: Galactic A-SGs with CRIRES CRIRES spectroscopy CR yogenic high-resolution I nfrared E chelle S pectrograph high resolving power R =  ≤ 100,000 wavelength coverage 0.95 to 5.3  m ~ 200 settings for full spectral coverage detector: 4 x 4096 x 512 Aladdin III InSn Pilot program: 3 A-SGs HD87737 (A0 Ib) HD (A2 Iabe) HD92207 (A0 Iae) - (partial) coverage of J, H, K, L band A-stars Moscow –

CRIRES spectroscopy Telluric Line Correction high-resolution: detailed line profiles telluric lines resolved telluric line removal via modelling: - radiative transfer code FASCODE & HITRAN molecular database - GDAS atmospheric profiles HD (A2 Iabe) Przybilla et al. (in prep.) A-stars Moscow –

CRIRES spectroscopy Near-IR Hydrogen Lines high-resolution: detailed line profiles telluric lines resolved HD (A2 Iabe) Przybilla et al. (in prep.) A-stars Moscow –

CRIRES spectroscopy high-resolution: detailed line profiles telluric lines resolved analysis: extension of previous modelling consistency with visual strong NLTE effects + Br  : stellar wind HD (A2 Iabe) Near-IR Hydrogen Lines Przybilla et al. (in prep.) A-stars Moscow –

CRIRES spectroscopy HD (A2 Iabe) Przybilla et al. (in prep.) Near-IR Metal Lines metal lines in near-IR: C, N, O, Mg, Si, Fe + He stellar evolution galactochemical evolution A-stars Moscow –

CRIRES spectroscopy HD (A2 Iabe) Near-IR Metal Lines metal lines in near-IR: C, N, O, Mg, Si, Fe + He stellar evolution galactochemical evolution analysis: - extension of previous modelling - strong NLTE effects - good agreement with visual but adjustment of some model atoms necessary (NLTE amplification) improved atomic data Przybilla et al. (in prep.) A-stars Moscow –

Nuclear path of the CNO-cycles initially CN-cyle:, O const. ~ 4 for initial (scaled) solar composition for cosmic abundance standard X=0.715 Y=0.271 Z=0.014 diagnostic diagram: mass ratios N/C vs. N/O Stellar Evolution Przybilla et al. (2010) A-stars Moscow –

Mixing of CNO: Our NLTE Data B-MS stars in solar neighbourhood supergiants throughout MW Przybilla et al (2010), Nieva & Przybilla (2012), Firnstein & Przybilla (in prep.) Stellar Evolution A-stars Moscow –

Mixing vs. Evolutionary Status Data from Przybilla et al (2010), Nieva & Przybilla (2012), Firnstein & Przybilla (in prep.) Tracks : Meynet & Maeder (2003), Maeder & Meynet (2005) Stellar Evolution MS evolution compatible with models Supergiants more advanced than predicted by models - first dredge up? A-stars Moscow –

A-stars Moscow – Asteroseismology + new stellar evolution models Stellar Evolution Saio et al. (2013) Pulsations post-RSG abundances prae-RSG evolutionary status not clear

Summary using non-LTE modelling and comprehensive analysis techniques absolute oxygen abundance determinations feasible for high precision and accuracy: dex (1  statistical uncertainty) ~0.10 dex (1  systematic uncertainty) non-LTE effects at all scales, in particular strong in near-IR LTE abundance patterns vanish in non-LTE, scaled CAS evolutionary status (pre-RSG, post-RSG) still unclear A-stars Moscow –