COMP4210 Information Retrieval and Search Engines Lecture 9: Link Analysis.

Slides:



Advertisements
Similar presentations
Lecture 18: Link analysis
Advertisements

Matrices, Digraphs, Markov Chains & Their Use by Google Leslie Hogben Iowa State University and American Institute of Mathematics Leslie Hogben Iowa State.
Graphs, Node importance, Link Analysis Ranking, Random walks
CS345 Data Mining Link Analysis Algorithms Page Rank Anand Rajaraman, Jeffrey D. Ullman.
Link Analysis: PageRank
Link Analysis David Kauchak cs160 Fall 2009 adapted from:
More on Rankings. Query-independent LAR Have an a-priori ordering of the web pages Q: Set of pages that contain the keywords in the query q Present the.
DATA MINING LECTURE 12 Link Analysis Ranking Random walks.
1 Algorithms for Large Data Sets Ziv Bar-Yossef Lecture 3 March 23, 2005
Introduction to Information Retrieval Introduction to Information Retrieval Hinrich Schütze and Christina Lioma Lecture 21: Link Analysis.
Introduction to PageRank Algorithm and Programming Assignment 1 CSC4170 Web Intelligence and Social Computing Tutorial 4 Tutor: Tom Chao Zhou
1 CS 430 / INFO 430: Information Retrieval Lecture 16 Web Search 2.
Information Retrieval IR10 Today’s lecture Anchor text Link analysis for ranking Pagerank and variants HITS.
Introduction to Information Retrieval Introduction to Information Retrieval Hinrich Schütze and Christina Lioma Lecture 21: Link Analysis.
1 Algorithms for Large Data Sets Ziv Bar-Yossef Lecture 3 April 2, 2006
CS276B Text Retrieval and Mining Winter 2005 Lecture 11.
Link Analysis, PageRank and Search Engines on the Web
CS345 Data Mining Link Analysis Algorithms Page Rank Anand Rajaraman, Jeffrey D. Ullman.
Web Information retrieval Lecture 1 Presentation by Andrei Broder, IBM Krishna Bharat, Google Prabhakar Rahavan, Verity Inc.
INF 2914 Web Search Lecture 4: Link Analysis Today’s lecture Anchor text Link analysis for ranking Pagerank and variants HITS.
CS347 Lecture 6 April 25, 2001 ©Prabhakar Raghavan.
Adapted from Lectures by
Information Retrieval Link-based Ranking. Ranking is crucial… “.. From our experimental data, we could observe that the top 20% of the pages with the.
Cloud and Big Data Summer School, Stockholm, Aug., 2015 Jeffrey D. Ullman.
Λ14 Διαδικτυακά Κοινωνικά Δίκτυα και Μέσα
Presented By: - Chandrika B N
Introduction to Information Retrieval Introduction to Information Retrieval Hinrich Schütze and Christina Lioma Lecture 21: Link Analysis.
Introduction to Information Retrieval (Manning, Raghavan, Schutze) Chapter 21 Link analysis.
Information retrieval Lecture 9 Recap and today’s topics Last lecture web search overview pagerank Today more sophisticated link analysis using links.
PrasadL17LinkAnalysis1 Link Analysis Adapted from Lectures by Prabhakar Raghavan (Yahoo, Stanford) and Christopher Manning (Stanford)
ITCS 6265 Lecture 17 Link Analysis This lecture Anchor text Link analysis for ranking Pagerank and variants HITS.
Lecture 14: Link Analysis
CS276 Lecture 18 Link Analysis Today’s lecture Anchor text Link analysis for ranking Pagerank and variants HITS.
CS276 Information Retrieval and Web Search Christopher Manning and Prabhakar Raghavan Lecture 18: Link analysis.
Hyperlink Analysis for the Web. Information Retrieval Input: Document collection Goal: Retrieve documents or text with information content that is relevant.
Hyperlink Analysis for the Web. Information Retrieval Input: Document collection Goal: Retrieve documents or text with information content that is relevant.
Introduction to Information Retrieval Introduction to Information Retrieval CS276 Information Retrieval and Web Search Chris Manning, Pandu Nayak and.
Introduction to Information Retrieval Introduction to Information Retrieval Information Retrieval and Web Search Pandu Nayak and Prabhakar Raghavan Lecture.
Introduction to Information Retrieval Introduction to Information Retrieval Modified from Stanford CS276 slides Chap. 21: Link analysis.
Introduction to Information Retrieval LINK ANALYSIS 1.
1 University of Qom Information Retrieval Course Web Search (Link Analysis) Based on:
CS315 – Link Analysis Three generations of Search Engines Anchor text Link analysis for ranking Pagerank HITS.
Web Search and Tex Mining Lecture 9 Link Analysis.
PageRank. s1s1 p 12 p 21 s2s2 s3s3 p 31 s4s4 p 41 p 34 p 42 p 13 x 1 = p 21 p 34 p 41 + p 34 p 42 p 21 + p 21 p 31 p 41 + p 31 p 42 p 21 / Σ x 2 = p 31.
CS349 – Link Analysis 1. Anchor text 2. Link analysis for ranking 2.1 Pagerank 2.2 Pagerank variants 2.3 HITS.
Link Analysis Rong Jin. Web Structure  Web is a graph Each web site correspond to a node A link from one site to another site forms a directed edge 
PrasadL21LinkAnalysis1 Link Analysis Adapted from Lectures by Prabhakar Raghavan (Yahoo, Stanford), Christopher Manning (Stanford), and Raymond Mooney.
Ranking Link-based Ranking (2° generation) Reading 21.
CSCI 5417 Information Retrieval Systems Jim Martin Lecture 20 11/3/2011.
Web-Mining Agents Community Analysis Tanya Braun Universität zu Lübeck Institut für Informationssysteme.
Information Retrieval and Web Search Link analysis Instructor: Rada Mihalcea (Note: This slide set was adapted from an IR course taught by Prof. Chris.
CS276A Text Information Retrieval, Mining, and Exploitation Lecture November, 2002 Special thanks to Andrei Broder, IBM Krishna Bharat, Google for.
CompSci 100E 4.1 Google’s PageRank web site xxx web site yyyy web site a b c d e f g web site pdq pdq.. web site yyyy web site a b c d e f g web site xxx.
Link Analysis Algorithms Page Rank Slides from Stanford CS345, slightly modified.
CS 540 Database Management Systems Web Data Management some slides are due to Kevin Chang 1.
1 CS 430 / INFO 430: Information Retrieval Lecture 20 Web Search 2.
Jeffrey D. Ullman Stanford University.  Web pages are important if people visit them a lot.  But we can’t watch everybody using the Web.  A good surrogate.
Modified by Dongwon Lee from slides by
Quality of a search engine
Search Engines and Link Analysis on the Web
Link analysis and Page Rank Algorithm
Information Retrieval Christopher Manning and Prabhakar Raghavan
INFORMATION RETRIEVAL TECHNIQUES BY DR. ADNAN ABID
Lecture 22 SVD, Eigenvector, and Web Search
Prof. Paolo Ferragina, Algoritmi per "Information Retrieval"
INFORMATION RETRIEVAL TECHNIQUES BY DR. ADNAN ABID
Prof. Paolo Ferragina, Algoritmi per "Information Retrieval"
Lecture 22 SVD, Eigenvector, and Web Search
Lecture 22 SVD, Eigenvector, and Web Search
CS276 Information Retrieval and Web Search
Presentation transcript:

COMP4210 Information Retrieval and Search Engines Lecture 9: Link Analysis

Today’s lecture Anchor text Link analysis for ranking Pagerank and variants HITS

The Web as a Directed Graph Assumption 1: A hyperlink between pages denotes author perceived relevance (quality signal) Assumption 2: The anchor of the hyperlink describes the target page (textual context) Page A hyperlink Page B Anchor 21.1

Anchor Text WWW Worm - McBryan [Mcbr94] For ibm how to distinguish between: IBM’s home page (mostly graphical) IBM’s copyright page (high term freq. for ‘ibm’) Rival’s spam page (arbitrarily high term freq.) “ibm” “ibm.com” “IBM home page” A million pieces of anchor text with “ibm” send a strong signal

Indexing anchor text When indexing a document D, include anchor text from links pointing to D. Armonk, NY-based computer giant IBM announced today Joe’s computer hardware links Sun HP IBM Big Blue today announced record profits for the quarter

Indexing anchor text Can sometimes have unexpected side effects - e.g., evil empire. Can score anchor text with weight depending on the authority of the anchor page’s website E.g., if we were to assume that content from cnn.com or yahoo.com is authoritative, then trust the anchor text from them

Anchor Text Other applications Weighting/filtering links in the graph Generating page descriptions from anchor text

Citation Analysis Citation frequency Co-citation coupling frequency Cocitations with a given author measures “impact” Cocitation analysis Bibliographic coupling frequency Articles that co-cite the same articles are related Citation indexing Who is author cited by? (Garfield 1972) Pagerank preview: Pinsker and Narin ’60s

Query-independent ordering First generation: using link counts as simple measures of popularity. Two basic suggestions: Undirected popularity: Each page gets a score = the number of in-links plus the number of out-links (3+2=5). Directed popularity: Score of a page = number of its in-links (3).

Query processing First retrieve all pages meeting the text query (say venture capital). Order these by their link popularity (either variant on the previous page).

Spamming simple popularity Exercise: How do you spam each of the following heuristics so your page gets a high score? Each page gets a static score = the number of in-links plus the number of out-links. Static score of a page = number of its in- links.

Pagerank scoring Imagine a browser doing a random walk on web pages: Start at a random page At each step, go out of the current page along one of the links on that page, equiprobably “In the steady state” each page has a long- term visit rate - use this as the page’s score. 1/3 21.2

Not quite enough The web is full of dead-ends. Random walk can get stuck in dead-ends. Makes no sense to talk about long-term visit rates. ?? 21.2

Teleporting At a dead end, jump to a random web page. At any non-dead end, with probability 10%, jump to a random web page. With remaining probability (90%), go out on a random link. 10% - a parameter. 21.2

Result of teleporting Now cannot get stuck locally. There is a long-term rate at which any page is visited (not obvious, will show this). How do we compute this visit rate? 21.2

Markov chains A Markov chain consists of n states, plus an n  n transition probability matrix P. At each step, we are in exactly one of the states. For 1  i,j  n, the matrix entry P ij tells us the probability of j being the next state, given we are currently in state i. ij P ij P ii >0 is OK

Markov chains Clearly, for all i, Markov chains are abstractions of random walks. Exercise: represent the teleporting random walk from 3 slides ago as a Markov chain, for this case:

Ergodic Markov chains A Markov chain is ergodic if you have a path from any state to any other For any start state, after a finite transient time T 0, the probability of being in any state at a fixed time T>T 0 is nonzero. Not ergodic (even/ odd)

Ergodic Markov chains For any ergodic Markov chain, there is a unique long-term visit rate for each state. Steady-state probability distribution. Over a long time-period, we visit each state in proportion to this rate. It doesn’t matter where we start

Probability vectors A probability (row) vector x = (x 1, … x n ) tells us where the walk is at any point. E.g., (000…1…000) means we’re in state i. in1 More generally, the vector x = (x 1, … x n ) means the walk is in state i with probability x i

Change in probability vector If the probability vector is x = (x 1, … x n ) at this step, what is it at the next step? Recall that row i of the transition prob. Matrix P tells us where we go next from state i. So from x, our next state is distributed as xP

Steady state example The steady state looks like a vector of probabilities a = (a 1, … a n ): a i is the probability that we are in state i. 12 3/4 1/4 3/41/4 For this example, a 1 =1/4 and a 2 =3/

How do we compute this vector? Let a = (a 1, … a n ) denote the row vector of steady-state probabilities. If we our current position is described by a, then the next step is distributed as aP. But a is the steady state, so a=aP. Solving this matrix equation gives us a. So a is the (left) eigenvector for P. (Corresponds to the “principal” eigenvector of P with the largest eigenvalue.) Transition probability matrices always have larges eigenvalue

One way of computing a Recall, regardless of where we start, we eventually reach the steady state a. Start with any distribution (say x=(10…0)). After one step, we’re at xP; after two steps at xP 2, then xP 3 and so on. “Eventually” means for “large” k, xP k = a. Algorithm: multiply x by increasing powers of P until the product looks stable

Pagerank summary Preprocessing: Given graph of links, build matrix P. From it compute a. The entry a i is a number between 0 and 1: the pagerank of page i. Query processing: Retrieve pages meeting query. Rank them by their pagerank. Order is query-independent

The reality Pagerank is used in google, but so are many other clever heuristics.

Pagerank: Issues and Variants How realistic is the random surfer model? What if we modeled the back button? Surfer behavior sharply skewed towards short paths Search engines, bookmarks & directories make jumps non-random. Biased Surfer Models Weight edge traversal probabilities based on match with topic/query (non-uniform edge selection) Bias jumps to pages on topic (e.g., based on personal bookmarks & categories of interest)

Topic Specific Pagerank Conceptually, we use a random surfer who teleports, with say 10% probability, using the following rule: Selects a category (say, one of the 16 top level ODP categories) based on a query & user -specific distribution over the categories Teleport to a page uniformly at random within the chosen category Sounds hard to implement: can’t compute PageRank at query time!

Topic Specific Pagerank Offline:Compute pagerank for individual categories Query independent as before Each page has multiple pagerank scores – one for each ODP category, with teleportation only to that category Online: Distribution of weights over categories computed by query context classification Generate a dynamic pagerank score for each page - weighted sum of category-specific pageranks

Influencing PageRank (“Personalization”) Input: Web graph W influence vector v v : (page  degree of influence) Output: Rank vector r: (page  page importance wrt v) r = PR(W, v)

Non-uniform Teleportation Teleport with 10% probability to a Sports page Sports

Interpretation of Composite Score For a set of personalization vectors {v j }  j [w j · PR(W, v j )] = PR(W,  j [w j · v j ]) Weighted sum of rank vectors itself forms a valid rank vector, because PR() is linear wrt v j

Interpretation 10% Sports teleportation Sports

Interpretation Health 10% Health teleportation

Interpretation Sports Health pr = (0.9 PR sports PR health ) gives you: 9% sports teleportation, 1% health teleportation

Resources IIR Chap pdf 09.pdf 95.pdf 95.pdf d/p270/kamvar-270-xhtml/index.html d/p270/kamvar-270-xhtml/index.html d/p641/xhtml/p641-mccurley.html d/p641/xhtml/p641-mccurley.html