WENDELSTEIN 7-X Basismaschine Design Review Plasma Vessel Max-Planck- Institut für Plasmaphysik J. Reich, W7-X BasismaschineDesign Review Plasma Vessel.

Slides:



Advertisements
Similar presentations
19th – 20th of September 2007Cryogenic Expert Meeting at GSI, Jan Patrick Meier1/11 Cryogenic Experts Meeting at GSI, 2007 The SIS 100 Cryogenic Jumper.
Advertisements

MICE RF and Coupling Coil Module Outstanding Issues Steve Virostek Lawrence Berkeley National Laboratory MICE Collaboration Meeting October 26, 2004.
SPL Intercavity support Conceptual design review 04/11/ A. Vande Craen TE/MSC-CMI.
Statically Determinate and Indeterminate System of Bars.
MICE- AFC Unit Mechanical Design of the Cold Mass Support System Oxford University Rohan Senanayake.
N. Dhanaraj, Y. Orlov, R. Wands Thermal-Stress Analysis of CC1 Space Frame.
Heinz Grote1 Presentation to NSCX WENDELSTEIN 7-X Assembly Max-Planck- Institut für Plasmaphysik KKS-Nr.: 1-AD Dok-Kennz.: -Txxxx.0 Heinz Grote October.
ITER VV supports Cadarache 6 September 2007 A. Capriccioli.
Connection of flange plate with web
MICE Collaboration Meeting at Frascati, Jun 26~29, 2005 Iron Shield Mounting Design Stephanie Yang.
1 Update on Focus Coil Design and Configuration M. A. Green, G. Barr, W. Lau, R. S. Senanayake, and S. Q. Yang University of Oxford Department of Physics.
Tracker Solenoid Module Design Update Steve VirostekStephanie Yang Mike GreenWing Lau Lawrence Berkeley National LabOxford Physics MICE Collaboration Meeting.
Progress on the MICE 201 MHz Cavity Design Steve Virostek Lawrence Berkeley National Lab RF Working Group Fermilab August 22, 2007  automatic.
Background to the current problem 1. As a result of the high stresses in the bobbin due to the magnet load, the bobbin end plate needs to be increased.
MICE Collaboration Meeting March 29 - April 1, CERN MICE alignment, tolerances and supports Tuesday March 30 Room Edgar Black/IIT March17-
Felix Wamers, Technical Coordination Meeting, 12 th -13 th of May CERN-GSI Technical Coordination Meeting Felix Wamers, Yu Xiang,
Home Work #7 Due Date:29 April, 2010 (Turn in your assignment at the mail box of S581 outside the ME general office) The solutions must be written on single-side.
Luca Dassa – 02/03/ / 8 CRAB cavities meeting Bolt size (1) We are dealing with material where Yield strength and tensile strength are very close!
CRYO PIPING & INTER-MODULE CONNECTIONS Yun He, Daniel Sabol, Joe Conway External Review of MLC Daniel Sabol, MLC External Review 10/3/2012.
1 RF-Structures Mock-Up FEA Assembly Tooling V. Soldatov, F. Rossi, R. Raatikainen
PROBLEM mm x y 800 mm P = 1500 N z y 50 mm 100 mm
Luca Dassa – 23/02/ / 8 CRAB cavities meeting Preload Bolt size (1) Shear load: 602 N (p=0.26 MPa) -> Min preload: 2006 with Static friction coefficient:
Bending Shear and Moment Diagram, Graphical method to construct shear
Alignment and assembling of the cryomodule Yun He, James Sears, Matthias Liepe MLC external review October 03, 2012.
Construction of Wendelstein 7-X Max-Planck-Institut für Plasmaphysik
FAILURE INVESTIGATION OF UNDERGROUND DISTANT HEATING PIPELINE
Photogrammetry at WENDELSTEIN 7-X Unternehmung WENDELSTEIN 7-X Max-Planck- Institut für Plasmaphysik Torsten Bräuer1Meeting with NCSX, Greifswald,
RFCC Module Design Update  automatic tuners  cavity suspension  cavity installation Steve Virostek Lawrence Berkeley National Lab MICE Collaboration.
Cavity support scheme options Thomas Jones 25/06/15 to 06/07/15 1.
Cooling Pipes: Force Analysis Thermal forces Disc deflections Manufacturing tolerance forces Glue joint analysis Friction forces.
EBW tooling for PETS FEM Riku Raatikainen
Brookhaven - fermilab - berkeley US LHC ACCELERATOR PROJECT LHC IRQ Inner Triplet Review Q1, Q2, and Q3 Mechanics T. Nicol April 24-25, 2007.
CLIC Module meeting, 22/08/2011 N. Chritin (EN/MME) Cradles design for CLIC module supporting system (EDMS )  General principle  Main inputs an.
Max-Planck- Institut für Plasmaphysik Karsten Liesenberg / AS-T Visit NCSX engineers 11/12 October 2007 Final assembly of Stellarator W7-X in the torus-assembly.
Mechanical Properties of Materials
56 MHz SRF Cavity Cryostat support system and Shielding C. Pai
ECAL End Cap Dee Assembly, Transport, InstallationCERN January 2006AR / RJSG – 1 Alexandre Riabov (IHEP, Protvino) Justin Greenhalgh (RAL) Finite Element.
Status report AHCAL Mechanics Karsten Gadow CALICE Collaboration Meeting KEK, Studies of AHCAL absorber structure stability.
Unit-5. Torsion in Shafts and Buckling of Axially Loaded Columns Lecture Number-3 Mr. M.A.Mohite Mechanical Engineering S.I.T., Lonavala.
C. Garion Presentation Outline  Overview of the inner triplet interconnections  Q1/Q2, Q2/Q3 interconnections  General view  Working conditions  Compensation.
Max-Planck- Institut für Plasmaphysik U. Schultz, Assembly- Technology Working package Port assembly 1 Working package Port assembly Uwe Schultz.
Results of FEA for the PETS EBW tooling Riku Raatikainen
Cavity support scheme options Thomas Jones 25/06/15 1.
Alignment and assembling of the cryomodule Yun He, James Sears, Matthias Liepe.
A View of NCSX Structural System and Load Path for the Base Support Structure.
MICE RFCC Module Update Steve Virostek Allan DeMello Lawrence Berkeley National Laboratory MICE CM27 at RAL, UK July 8, 2010.
Ralf Eichhorn CLASSE, Cornell University. I will not talk about: Cavities (Nick and Sam did this) HOM absorbers (did that yesterday) Power couplers (see.
Page 1 GSI, Hydraulic Actuators for PANDA Target Spectrometer Jost Lühning, GSI Darmstadt Functional Specifications for moving the TS: Two synchronous.
NSTX TF outer leg analysis Because the stress on umbrella structure is too high, there are some ideas to reduce it, like adding a case to enhance the stiffness.
The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme.
Max-Planck-Institut für Plasmaphysik 1 ICEC 26- ICMC 2016 March 7-11, 2016, New Delhi, India Michael Nagel Cryogenic commissioning, cool down and first.
TPC Support Installation 26 Apr 2016Dan Wenman Mechanical Engineer1 Overview Installation of the support rails Details of the rail from the SAS to the.
Design ideas for a cos(2q) magnet
Present status of the flux return yoke design
The Budker Institute of Nuclear Physics
Status of design and production of LEP connection cryostat
A. Vande Craen, C. Eymin, M. Moretti, D. Ramos CERN
Structural aspects related to the vacuum vessel of the SHIP Project
Sphere Option for Helical spring CF16 Bellows Adjustment bolts (horizontal plane) CF38.
Step IV - Engineering Jason Tarrant – Integration Engineering
Design of Distribution Feedbox at LHC P7
Max-Planck-Institut für Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, D Greifswald, Germany Main-Components of the Wendelstein 7-X.
Alignment of the first two magnet system modules of Wendelstein 7-X
Torsten Bräuer and the Metrologyteam
DCLL TBM Design Status, Current and future activities
Welds in the magnet system
On the accuracy of port assembly at Wendelstein 7-X
Cryomodule Assembly Plan
Cryostat System: FE Global Model
Presentation transcript:

WENDELSTEIN 7-X Basismaschine Design Review Plasma Vessel Max-Planck- Institut für Plasmaphysik J. Reich, W7-X BasismaschineDesign Review Plasma Vessel and Ports März 2004 Folie 1 Design Review Plasma Vessel The Plasma Vessel Support Structure Horizontal Support by Mr. J. Reich Wendelstein 7-X Basismaschine Department Cryostat

WENDELSTEIN 7-X Basismaschine Design Review Plasma Vessel Max-Planck- Institut für Plasmaphysik J. Reich, W7-X BasismaschineDesign Review Plasma Vessel and Ports März 2004 Folie 2 Horizontal support 1.Functions of the horizontal support 2.Centering of the plasma vessel 2.1. Global design 2.2. Forces on one point 2.3. Design of the centering points 3.Fine adjustment of the plasma vessel 3.1. Concept 4. Conclusions

WENDELSTEIN 7-X Basismaschine Design Review Plasma Vessel Max-Planck- Institut für Plasmaphysik J. Reich, W7-X BasismaschineDesign Review Plasma Vessel and Ports März 2004 Folie 3 1. Functions of the horizontal support - Centering the plasma vessel - Allow for the thermal expansion/contarction of the plasma vessel - Fine adjustment of the plasma vessel within +- 5 mm

WENDELSTEIN 7-X Basismaschine Design Review Plasma Vessel Max-Planck- Institut für Plasmaphysik J. Reich, W7-X BasismaschineDesign Review Plasma Vessel and Ports März 2004 Folie 4 5 centering points fixed on the outer vessel - fix global center - radial movement possible - no rotation possible 2. Centering of the plasma vessel 2.1. Global design - independent from the vertical support

WENDELSTEIN 7-X Basismaschine Design Review Plasma Vessel Max-Planck- Institut für Plasmaphysik J. Reich, W7-X BasismaschineDesign Review Plasma Vessel and Ports März 2004 Folie 5 Detail of a centering point Moving conditions: Movement on a circle around the fixed-point Centering bar with 2 swing bearings (nearly a straight line)

WENDELSTEIN 7-X Basismaschine Design Review Plasma Vessel Max-Planck- Institut für Plasmaphysik J. Reich, W7-X BasismaschineDesign Review Plasma Vessel and Ports März 2004 Folie Maximum force on the centering points (forces from vacuum, bellows, outer forces) I. complete axial force on 1 pointII. complete tangential force on 1 point Maximum force: 145 KN/per centering point

WENDELSTEIN 7-X Basismaschine Design Review Plasma Vessel Max-Planck- Institut für Plasmaphysik J. Reich, W7-X BasismaschineDesign Review Plasma Vessel and Ports März 2004 Folie Design of the centering point - Redesign of the port AEU from a diagnostic to a supply port - Port in two versions, round and oval - 5 times, 1 per module, - Location between two modules port AEU 10/20 Port AEU 30/40/50

WENDELSTEIN 7-X Basismaschine Design Review Plasma Vessel Max-Planck- Institut für Plasmaphysik J. Reich, W7-X BasismaschineDesign Review Plasma Vessel and Ports März 2004 Folie 8 Assembly situation on the outer vessel oval port AEU centering bar bracket on the outer vessel, fixed-point dome on the outer vessel

WENDELSTEIN 7-X Basismaschine Design Review Plasma Vessel Max-Planck- Institut für Plasmaphysik J. Reich, W7-X BasismaschineDesign Review Plasma Vessel and Ports März 2004 Folie 9 Maximum stress in the welding seam: ~220 MPa <= 225 MPa (R P1,0 at 150°C) Maximum bending: ~ 5 mm

WENDELSTEIN 7-X Basismaschine Design Review Plasma Vessel Max-Planck- Institut für Plasmaphysik J. Reich, W7-X BasismaschineDesign Review Plasma Vessel and Ports März 2004 Folie Fine adjustment of the plasma vessel 3.1. Concept Basic points: - Movement of the plasma vessel within a cube - Length of each side of the cube is 10 mm, => ±5 mm - Adjustment at a time can only be done by axial movement of 1 port, it requires that all others centering bars are disconnected from the brackets - Consequent load of this port in 1 direction (tensile/pressure loading) - at least 2 guideways in order to keep the plasma vessel in right position - Fixed-points for movement and guideways on the outer vessel - Before adjustment measurement of the plasma vessel position (maybe it must be a combination of various moving steps to reach the final position)

WENDELSTEIN 7-X Basismaschine Design Review Plasma Vessel Max-Planck- Institut für Plasmaphysik J. Reich, W7-X BasismaschineDesign Review Plasma Vessel and Ports März 2004 Folie 11 Picture of the concept guideway 1 Moving point, all loads in axial direction guideway 2

WENDELSTEIN 7-X Basismaschine Design Review Plasma Vessel Max-Planck- Institut für Plasmaphysik J. Reich, W7-X BasismaschineDesign Review Plasma Vessel and Ports März 2004 Folie 12 Detail of a moving point Maximum forces for movement on one point: 100% of static friction (axial) (1300 KN x 0.2 = 260 KN) 47% of the centering force (300 KN x 0,47 = 141 KN) Maximum stress in welding seam: 185 MPa

WENDELSTEIN 7-X Basismaschine Design Review Plasma Vessel Max-Planck- Institut für Plasmaphysik J. Reich, W7-X BasismaschineDesign Review Plasma Vessel and Ports März 2004 Folie Conclusions Centering of the plasma vessel and absorption of the movements due to the thermal contraction can be done by the 5 AEU-ports. The fine adjustment of the plasma vessel within narrow tolerances can be done by ports, too. Final solution depends on the forces from the vertical support (friction factor) and the assembling situation on the outer vessel (available space). Further investigations on the movement concept are necessary (design, FEM-calculation).