Computing at Météo-France CAS 2003, Annecy 1.News from computers 2.News from models.

Slides:



Advertisements
Similar presentations
Assimilation of radar data - research plan
Advertisements

Introduction to data assimilation in meteorology Pierre Brousseau, Ludovic Auger ATMO 08,Alghero, september 2008.
Status and performance of HIRLAM 4D-Var Nils Gustafsson.
Meso-NH model 40 users laboratories
Towards Rapid Update Cycling for Short Range NWP Forecasts in the HIRLAM Community WMO/WWRP Workshop on Use of NWP for Nowcasting UCAR Center Green Campus,
Daily runs and real time assimilation during the COPS campaign with AROME Pierre Brousseau, Y. Seity, G. Hello, S. Malardel, C. Fisher, L. Berre, T. Montemerle,
PREV ’AIR : An operational system for large scale air quality monitoring and forecasting over Europe
14th ALADIN Workshop, Innsbruck 1-4 June 2004 First LAMEPS experiments at the Hungarian Meteorological Service Edit Hágel and Gabriella Szépszó Hungarian.
Data assimilation of trace gases in a regional chemical transport model: the impact on model forecasts E. Emili 1, O. Pannekoucke 1,2, E. Jaumouillé 2,
Data assimilation schemes in numerical weather forecasting and their link with ensemble forecasting Gérald Desroziers Météo-France, Toulouse, France.
21/03/2000 9th ORAP Forum ECMWF/DM-1 Simulation et prevision du temps Dominique Marbouty Head, Operations Department European Centre for Medium-range Weather.
Numerical Weather Prediction on Linux-clusters – Operational and research aspects Nils Gustafsson SMHI.
Inter-Processor communication patterns in weather forecasting models Tomas Wilhelmsson Swedish Meteorological and Hydrological Institute Sixth Annual Workshop.
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Numerical weather prediction from short to long range.
Numerical weather prediction: current state and perspectives M.A.Tolstykh Institute of Numerical Mathematics RAS, and Hydrometcentre of Russia.
ECMWF Slide 1CAS2K3, Annecy, 7-10 September 2003 Report from ECMWF Walter Zwieflhofer European Centre for Medium-Range Weather Forecasting.
Slide 1 Bilateral meeting 2011Slide 1, ©ECMWF Status and plans for the ECMWF forecasting System.
JMA Global Model Hiromi Owada Numerical Prediction Division, Forecast Dept. Japan Meteorological Agency 1.
Francesca Marcucci, Lucio Torrisi with the contribution of Valeria Montesarchio, ISMAR-CNR CNMCA, National Meteorological Center,Italy First experiments.
The Canadian Numerical Weather Prediction System: Present and Future Gilbert Brunet Recherche en Prévision Numérique (RPN) Meteorological Research Branch.
Satellite Application on Weather Services in Japan Yasushi SUZUKI Japan Weather Association 12nd. GPM Applications Workshop, June/9-10/2015.
SRNWP workshop - Bologne Short range ensemble forecasting at Météo-France status and plans J. Nicolau, Météo-France.
NUMERICAL WEATHER PREDICTION K. Lagouvardos-V. Kotroni Institute of Environmental Research National Observatory of Athens NUMERICAL WEATHER PREDICTION.
ECMWF Forecasting System - Overview. Background/Establishment 1969Expert group in meteorology propose ‘European Meteorological Computing Centre’ 1975ECMWF.
Numerical simulations of the severe rainfall in Pula, Croatia, on 25 th September 2010 Antonio Stanešić, Stjepan Ivatek-Šahdan, Martina Tudor and Dunja.
The National Environmental Agency of Georgia L. Megrelidze, N. Kutaladze, Kh. Kokosadze NWP Local Area Models’ Failure in Simulation of Eastern Invasion.
The ELDAS system implementation and output production at Météo-France Gianpaolo BALSAMO, François BOUYSSEL, Jöel NOILHAN ELDAS 2nd progress meetin – INM.
NWP Activities at INM Bartolomé Orfila Estrada Area de Modelización - INM 28th EWGLAM & 13th SRNWP Meetings Zürich, October 2005.
10° COSMO GENERAL MEETING Plans and State of Art at USAM/CNMCA Massimo Ferri.
27 March 2009 Météo-France and hydrology Jean-Marie Carrière Director of Forecasting.
Meso-γ 3D-Var Assimilation of Surface measurements : Impact on short-range high-resolution simulations Geneviève Jaubert, Ludovic Auger, Nathalie Colombon,
Assimilating radiances from polar-orbiting satellites in the COSMO model by nudging Reinhold Hess, Detlev Majewski Deutscher Wetterdienst.
3DVAR Retrieval of 3D Moisture Field from Slant- path Water Vapor Observations of a High-resolution Hypothetical GPS Network Haixia Liu and Ming Xue Center.
Data assimilation and observing systems strategies Pierre Gauthier Data Assimilation and Satellite Meteorology Division Meteorological Service of Canada.
Angèle Simard Canadian Meteorological Center Meteorological Service of Canada MSC Computing Update.
Prague' 03 - Convergence1 Convergence between the ALADIN and AROME projects: opportunity and challenges I)Motivation II)Issues III)Partnerships IV)New.
Météo-France / CNRM – T. Bergot 1) Introduction 2) The methodology of the inter-comparison 3) Phase 1 : cases study Inter-comparison of numerical models.
The 2nd International Workshop on GPM Ground Validation TAIPEI, Taiwan, September 2005 GV for ECMWF's Data Assimilation Research Peter
The ALADIN-France Limited-Area Model Joël Stein Marc Tardy Hervé Bénichou.
Outline Background Highlights of NCAR’s R&D efforts A proposed 5-year plan for CWB Final remarks.
RC LACE 25th EWGLAM Meeting 6-9 October 2003, Lisbon1.
26 th EWGLAM & 11 th SRNWP meetings, Oslo, Norway, 4 th - 7 th October 2004 Stjepan Ivatek-Šahdan RC LACE Data Manager Croatian Meteorological and Hydrological.
Use of radar data in ALADIN Marián Jurašek Slovak Hydrometeorological Institute.
An ensemble study of HyMeX IOP6 and IOP7a Alan Hally (1,2), Evelyne Richard (1), Véronique Ducrocq (2) (1)LA, University of Toulouse, France (2)CNRM, Météo-France,
Using satellite data to understand uncertainties in reanalyses: UERRA Richard Renshaw, Peter Jermey with thanks to Jörg Trentmann, Jennifer Lenhardt, Andrea.
Improved road weather forecasting by using high resolution satellite data Claus Petersen and Bent H. Sass Danish Meteorological Institute.
NWP Activities at INM José A. García-Moya SMNT – INM 27th EWGLAM & 12th SRNWP Meetings Ljubljana, October 2005.
T. Bergot - Météo-France CNRM/GMME 1) Methodology 2) Results for Paris-CdG airport Improved site-specific numerical model of fog and low clouds -dedicated.
25 th EWGLAM/10 th SRNWP Lisbon, Portugal 6-9 October 2003 Use of satellite data at Météo-France Élisabeth Gérard Météo-France/CNRM/GMAP/OBS, Toulouse,
AROME/ALADIN discussions, Prague Data assimilation and variational algorithms in ALADIN 11-12th April, Data assimilation and variational algorithms.
Progress Report!for 2003 INM Operational system in use at the end of 2003 (I) The operational system is still based on HIRLAM version.
MPO 674 Lecture 2 1/20/15. Timeline (continued from Class 1) 1960s: Lorenz papers: finite limit of predictability? 1966: First primitive equations model.
Vincent N. Sakwa RSMC, Nairobi
Météo-France / CNRM – T. Bergot 1) Methodology 2) The assimilation procedures at local scale 3) Results for the winter season Improved Site-Specific.
3-5/10/2005, LjubljanaEWGLAM/SRNWP meeting NWP related Slovak Hydrometeorological Institute 2005.
Global vs mesoscale ATOVS assimilation at the Met Office Global Large obs error (4 K) NESDIS 1B radiances NOAA-15 & 16 HIRS and AMSU thinned to 154 km.
ALADIN 3DVAR at the Hungarian Meteorological Service 1 _____________________________________________________________________________________ 27th EWGLAM.
OSEs with HIRLAM and HARMONIE for EUCOS Nils Gustafsson, SMHI Sigurdur Thorsteinsson, IMO John de Vries, KNMI Roger Randriamampianina, met.no.
1 Next Generation of NR Michiko Masutani November 20, 2008.
Regional Re-analyses of Observations, Ensembles and Uncertainties of Climate information Per Undén Coordinator UERRA SMHI.
Mesoscale Assimilation of Rain-Affected Observations Clark Amerault National Research Council Postdoctoral Associate - Naval Research Laboratory, Monterey,
3. Modelling module 3.1 Basics of numerical atmospheric modelling M. Déqué – CNRM – Météo-France J.P. Céron – DClim – Météo-France.
Numerical simulations of the severe rainfall in Pula, Croatia, on 25 th September 2010 Antonio Stanešić, Stjepan Ivatek-Šahdan, Martina Tudor and Dunja.
Meteorological and Hydrological Service of Croatia
Progress in development of HARMONIE 3D-Var and 4D-Var Contributions from Magnus Lindskog, Roger Randriamampianina, Ulf Andrae, Ole Vignes, Carlos Geijo,
Tadashi Fujita (NPD JMA)
SWFDP in the Antilles (RA IV)
Meteorological and Hydrological Service of Croatia
NWP Strategy of DWD after 2006 GF XY DWD Feb-19.
NWP activities in Austria in 2006/2007 Y. Wang
Presentation transcript:

Computing at Météo-France CAS 2003, Annecy 1.News from computers 2.News from models

Fujitsu VPP 5000/31 dec 1999 – june PE Gflops 208 Gbytes main memory Crossbar 2x1,6 GB/s CAS 2003, Annecy

VPP 5000/64 and VPP 5000/60 june 2003 – sept 2006 Research system : 64 PE Gflops 300 GBytes main memory Operations system : 60 PE 576 Gflops 280 GBytes main memory CAS 2003, Annecy

Final configuration SYS-OP (60)SYS-RD (64) 3400 GB 2680 GB File server HIPPI switch CAS 2003, Annecy HIPPI switch 2 HIPPI links

Météo-France computing centre CAS 2003, Annecy HIPPI 800 Mbit/s Switching bandwith 64 Gbit/s STK silos 150 TB SGI O2K H-P servers Operations & development Workstations Fujitsu VPP’s

Historical point of view Cray 2 C98-4 Cray 2 C98-8 J916 VPP700E VPP VPP VPP CAS 2003, Annecy

Performance and the Moore law CAS 2003, Annecy

Archived data volume and the Moore law CAS 2003, Annecy

Archiving system main requirements CAS 2003, Annecy Phase A (march 2004) : 230 TB, 8.5 M files, I/O : 2.5 –5.2 TB/day Phase B (sept 2004) : 360 TB, 12 M files, I/O : 3.4 – 7.1 TB/day Phase C (sept 2005) : 560 TB, 17 M files, I/O : 4.5 –9.4 TB/day During all three phases : 4 days on disk cache 75 % of data must be accessed in less than 45 seconds 100 % of data must be accessed in less than 340 seconds

Computing at Météo-France part 2 : News from models CAS 2003, Annecy

Integrated Forecasting System A numerical weather prediction system developed and supported by Météo-France and the European Centre (ECMWF) Includes all contituents needed for global numerical prediction : A global spectral model (and associated tangent linear and adjoint models) 3D et 4D-VAR global assimilation etc Action de Recherche Petite Echelle Grande Echelle

CAS 2003, Annecy ECMWF (European Centre for Medium-range Weather Forecast) Reading – United Kingdom Global spectral model T511, 60 levels (up to 0.1 hPa). « Linear » (lat/lon) grid, 35 to 40 km. « Semi-lagrangian, semi-implicit » temporal integration, time step 20’. Forecasts up to 10 days, starting at 12 UTC every day 4D-VAR assimilation on a 12h window, through 2 minimisations at T159 (increment resolution) Ensemble forecast (EPS - Ensemble Prediction System) through 51 integrations of the same model, with resolution T255 / 40 levels

CAS 2003, Annecy Grid for the ARPEGE model The ARPEGE global model Global spectral model T L 358 C2.4, 41 levels Associated grid: 23 km (France)  133 km (antipodes) Representation on the globe with stretching and turning of the pole over the interest zone Collaboration with ECMWF

CAS 2003, Annecy The ARPEGE-Tropiques model Uniform resolution - horizontal grid without stretching (T L 359 grid) - vertical levels unchanged (41 levels) Run once a day from 00 UTC up to 72h range

CAS 2003, Annecy The ALADIN project Genesis Project started by Météo-France in 1990 A mutually beneficial collaboration with National Meteorological Services of Central and Eastern Europe concerning numerical prediction Acronym: Aire Limitée, Adaptation dynamique, Développement InterNational = Limited Area, dynamical Adaptation, InterNational Development

CAS 2003, Annecy The ALADIN project Different operational domains

CAS 2003, Annecy The Aladin-France limited area model A spectral model Domain: –a square 2740 km in side, centered on the point of maximal resolution of Arpège Vertical levels: –same as Arpège (41) Horizontal resolution –(9 km) ~ 2.5 × max resolution in Arpège Coupling: –applied every three hours to the global model Arpège

Principles of 4D-VAR assimilation 9h12h15h Assimilation window JbJb JoJo JoJo JoJo obs analysis xaxa xbxb corrected forecast previous forecast

CAS 2003, Annecy A short description of the 4D-VAR used at Météo-France (Toulouse) since June 2000 Minimization window 6h (maximum) INCREMENTAL technique: increments are evaluated by 2 minimizations at T107 and T149 (c=1) for the T358/c2.4 model Structure functions are not separable OBSERVATIONS WE USE: conventional, satellite winds, ATOVS radiances (no diffusiometer data) Weak constraint based on digital filters (also used to smoothen the trajectory after the last minimization)

CAS 2003, Annecy Operational use of models at Météo-France (June 2002) ARPEGE model (variable mesh), routine run 4 times a day –starting 00h UTC, until 96h –starting 06h UTC, until 42h –starting 12h UTC, until 72h –starting 18h UTC, until 30h Uniform ARPEGE model, routine run once a day –starting 00h UTC, until 72h ALADIN/France model, routine run 4 times a day –coupled to the corresponding ARPEGE model that gives boundary conditions and initial conditions, until the same forecast ranges Initial conditions are given by a 4D-VAR assimilation –run on 6h long time windows, centered on each of 00, 06, 12 and 18h UTC. –ARPEGE/Tropiques has its own 4D-Var. –Digital Filter Initialisation (DFI) is used for ARPEGE and ALADIN.

CAS 2003, Annecy Other operational models Oceanography : the MERCATOR project –North-Atlantic & Mediterranean sea : high resolution model (1/15°) –Global ocean : low resolution model (2°) –6 PEs (8 GB), 6 hours, 1week ( Ocean wave models Pollutant dispersion models

CAS 2003, Annecy Research models Climate model : ARPEGE-Climat –T L 63 or T L 159C2.5 –31 or 60 levels –T L 63 L31 used for seasonal forecasting Mesoscale model : MESO-NH –Mesoscale non-hydrostatic model –Joint development with Laboratoire d’Aérologie (Université de Toulouse Paul Sabatier) (

CAS 2003, Annecy Météo-France plans for concerning Numerical Weather Prediction Optimization of the ARPEGE-ALADIN system mainly for physics, observation use and assimilation algorithms AROME project (Application de la Recherche à l’Opérationnel à Méso-Échelle = Applying Research to Operational use at Meso Scale) NWP system with a 2-3 km horizontal mesh over France in about Target more concern for short-range prediction of dangerous phenomena (eg. precipitations), together with a greater coordination with other organizations using such predictions (eg. hydrologist)

CAS 2003, Annecy Météo-France cooperations concerning NWP ECMWF ALADIN community HIRLAM EUMETSAT (SAF) Spatial Agencies

CAS 2003, Annecy AROME PROJECT NH model based on existing dynamics in ALADIN. Largely derived from Meso-NH for physical parameterizations. Specific meso-scale data assimilation system (inspired from existing ALADIN 3D-VAR to start with).

CAS 2003, Annecy Regional use of observations for AROME Priority on infra-red radiances and imagery from new satellites, and on radar observations. Use of all surface regional and national networks Use of other satellite data: micro-waves, GPS (especially ground-based), lidar winds.

Computing at M-F THANKS CAS 2003, Annecy