UV i VUV spectroscopy of BaF 2 :Ce crystals (Report from Hasylab experiments) Andrzej J. Wojtowicz IF UMK Optoelectronics Seminar, Oct. 26, 2009.

Slides:



Advertisements
Similar presentations
Spectroscopic Light Sources
Advertisements

Dispersive property of a G-M tube HV - + In the proportional region a G-M tube has dispersive properties tube voltage.
II. Basic Concepts of Semiconductor OE Devices
17-May-15FCAL collaboration workshop, Status of sensor R&D in Minsk K. Afanaciev, M. Baturitsky, I. Emeliantchik, A. Ignatenko, A. Litomin, V. Shevtsov.
Space-Separated Quantum Cutting Anthony Yeh EE C235, Spring 2009.
Phys 102 – Lecture 25 The quantum mechanical model of light.
Accelerator Physics: Synchrotron radiation Lecture 2 Henrik Kjeldsen – ISA.
1 Thermally induced 4f – 5d transitions in LuAlO 3 :Ce (LuAP) A.J. Wojtowicz, S. Janus Institute of Physics, N. Copernicus Univ. Toruń, POLAND IEEE 9th.
Saturated gain in GaN epilayers studied by variable stripe length technique Rui Li Journal Club, Electrical Engineering Boston University J. Mickevičiusa.
Part IV: Optical Spectroscopy of Solids
1 VUV spectroscopy of BaF 2 :Er A.J. Wojtowicz Institute of Physics, N. Copernicus Univ. Toruń, POLAND FPS 2007 French-Polish Symposium on Spectroscopy.
Scintillation properties of selected oxide monocrystals activated with Ce and Pr A.J. Wojtowicz 1), W. Drozdowski 1), and D. Wisniewski 1) J.L. Lefaucheur.
4-1 Chap. 7 (Optical Instruments), Chap. 8 (Optical Atomic Spectroscopy) General design of optical instruments Sources of radiation Selection of wavelength.
ITOH Lab. Hiroaki SAWADA
Photon detection Visible or near-visible wavelengths
Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 6 Lecture 6: Integrated Circuit Resistors Prof. Niknejad.
UV and VUV spectroscopy of rare earth activated wide bandgap materials A.J. Wojtowicz Institute of Physics, N. Copernicus Univ. Toruń, POLAND II International.
Basic Electronics By Asst Professor : Dhruba Shankar Ray For B.Sc. Electronics Ist Year 1.
Luminescence and excitation spectra due to inter- and intraconfigurational transitions of Er 3+ in YAG:Er Aleksanyan Eduard a,b*, Harutunyan Vachagan b,
NEEP 541 Ionization in Semiconductors - II Fall 2002 Jake Blanchard.
Optical Characterization methods Rayleigh scattering Raman scattering transmission photoluminescence excitation photons At a glance  Transmission: “untouched”
Results Study of Carrier Dynamics in ZnSe Based Scintillators by Frequency Domain Lifetime Measurements J.Mickevičius, P.Vitta, G.Tamulaitis, A. Žukauskas.
Time-Resolved Photoluminescence Spectroscopy of InGaAs/InP Heterostructures* Colleen Gillespie and Tim Gfroerer, Davidson College, Davidson, NC Mark Wanlass,
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
SAINT-PETERSBURG STATE UNIVERSITY EXPERIMENTAL STUDY OF SPIN MEMORY IN NANOSTRUCTURES ROMAN V. CHERBUNIN.
Detectors (UV-Vis) 1. Phototube 2. Photomultiplier Tube (PMT) 3. Si Photodiode 4. Photodiode Array (PDA) 5. Charge Coupled Device (CCD) 6. Charge Injection.
1 Fast and efficient VUV/UV emissions from (Ba,La)F 2 :Er crystals Andrzej J. Wojtowicz, Sebastian Janus and Dawid Piatkowski N. Copernicus University,
Recombination Dynamics in Nitride Heterostructures: role of the piezoelectric field vs carrier localization A.Vinattieri, M.Colocci, M.Zamfirescu Dip.Fisica-
Chapter 15 Molecular Luminescence Spectrometry Three types of Luminescence methods are: (i) molecular fluorescence (ii) phosphorescence (iii) chemiluminescence.
LUMINESCENCE OF RE OVERSATURATED CRYSTALS A. Gektin a *, N. Shiran a, V. Nesterkina a, G. Stryganyuk b, K. Shimamura c, E. Víllora c, K. Kitamura c a Institute.
1 Electrical Conductivity in Polymers Polymers – van der Waals interactions – bonds of dipole moments Band gap (energy gap) is dependent on interatomic.
The 66 th International Symposium on Molecular Spectroscopy, June 2010 Fang Wang,Anh Lee and Timothy C. Steimle Dept. Chem. & BioChem., Arizona State University,
TCAD simulation of Si crystal with different clusters. Ernestas Zasinas, Rokas Bondzinskas, Juozas Vaitkus Vilnius University.
ECEE 302: Electronic Devices
Luminescence basics Types of luminescence
Introduction to semiconductor technology. Outline –4 Excitation of semiconductors Optical absorption and excitation Luminescence Recombination Diffusion.
Luminescent detectors of ionising radiation. L. Grigorjeva, P. Kulis, D. Millers, S. Chernov, M. Springis, I. Tale IWORDI Sept. Amsterdamm Institute.
Northwestern University Selected ZnO Properties - Molecular mass Specific gravity at room temp g/cm3 - Point group 6mm (Wurtzite)
Introduction to Semiconductor Technology. Outline 3 Energy Bands and Charge Carriers in Semiconductors.
1 Quantum phosphors Observation of the photon cascade emission process for Pr 3+ - doped phosphors under vacuum ultraviolet (VUV) and X-ray excitation.
Electron & Hole Statistics in Semiconductors A “Short Course”. BW, Ch
1.1 What’s electromagnetic radiation
H spectra 656 nm 486 nm 434 nm 410 nm. Ne spectra 540.1green 585.2yellow 588.2yellow 603.0orange 607.4orange 616.4orange 621.7red-orange 626.6red-orange.
The Spectra of Solid Xenon Luminescence Excited by the Bulk Electrical Discharge E.B. Gordon, Institute of Problems of Chemical Physics RAS, Chernogolovka.
The optical spectrum of SrOH revisited: Zeeman effect, high- resolution spectroscopy and Franck- Condon factors TRUNG NGUYEN, DAMIAN L KOKKIN, TIMOTHY.
Introduction to Semiconductors CSE251. Atomic Theory Consists of Electron, proton, neutron Electron revolve around nucleus in specific orbitals/shells.
Outline Review Material Properties Band gap Absorption Coefficient Mobility.
Lecture 1 OUTLINE Important Quantities Semiconductor Fundamentals
Today’s objectives- Semiconductors and Integrated Circuits
G. Tamulaitis, A. Augulis, V. Gulbinas, S. Nargelas, E. Songaila, A
Modeling Vacancy-Interstitial Clusters and Their Effect on Carrier Transport in Silicon E. Žąsinas, J. Vaitkus, E. Gaubas, Vilnius University Institute.
G. Tamulaitis, S. Nargelas, A. Vaitkevicius, Vilnius University,
An Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity Matthew Pelton Glenn Solomon, Charles Santori, Bingyang Zhang, Jelena.
Read: Chapter 2 (Section 2.2)
Read: Chapter 2 (Section 2.3)
Electron & Hole Statistics in Semiconductors A “Short Course”. BW, Ch
Chapter 4 Excess Carriers in Semiconductors
Lecture 1 OUTLINE Important Quantities Semiconductor Fundamentals
Exciton Fission in Solid Tetracene and Related Materials: a Possible Strategy for High Efficiency Organic Solar Cells Increasing the yield of charge carriers.
Lecture 2 OUTLINE Semiconductor Fundamentals (cont’d)
Basic Semiconductor Physics
Energy Band Diagram (revision)
Lecture 1 OUTLINE Semiconductor Fundamentals
Ultrafast Transient Absorption Studies on Photosystem I Reaction Centers from Chlamydomonas reinhardtii. 1. A New Interpretation of the Energy Trapping.
Ultrafast Transient Absorption Studies on Photosystem I Reaction Centers from Chlamydomonas reinhardtii. 1. A New Interpretation of the Energy Trapping.
Lecture 1 OUTLINE Basic Semiconductor Physics Reading: Chapter 2.1
Multi-Exciton Generation and Solar Cell Physics
Triplet Sensitization by Lead Halide Perovskite Thin Films for Efficient Solid-State Photon Upconversion at Subsolar Fluxes  Sarah Wieghold, Alexander.
Chapter 6 Carrier Transport.
Presentation transcript:

UV i VUV spectroscopy of BaF 2 :Ce crystals (Report from Hasylab experiments) Andrzej J. Wojtowicz IF UMK Optoelectronics Seminar, Oct. 26, 2009

Hasylab experiments, July 2009 and Aug Experimental teams: 2009: 2007: Piotr Palczewski, Sebastian Janus Marek Różański, Kinga Jastak Marcin WitkowskiRobert TheisAndrzej Wojtowicz

OUTLINE Experimental set-up Samples Some physics: localized and band states of charge carriers UV i VUV spectroscopy of BaF 2 :Ce crystals: results and discussion Summary

OUTLINE Experimental set-up Samples Some physics: localized and band states of charge carriers UV i VUV spectroscopy of BaF 2 :Ce crystals: results and discussion Summary

Superlumi station, beamline I, Doris III ring, Hasylab, DESY, Hamburg, Germany Prof. G. Zimmerer i Dr Aleksei Kotlov Funding: UE (via Hasylab; large experimental facilities), IF UMK

Superlumi station, technical details Excitation: synchrotron, McPherson monochromator (primary), grating (spherical mirror) 2 m, 1200 gr/mm, Al+MgF 2 ( nm), res nm Luminescence: Home-made Pouey VUV monochromator, 0.5 m, f/2.8, res. 1.1 nm, solar blind R6836 Hamamatsu PMT ( nm) UV-VIS Monochromator, Acton Research 0.3 m Czerny-Turner SpectraPro300i, f/4, Hamamatsu PMT R6358P ( nm). 3 gratings, 1200 gr/mm (2.7 nm/mm, blazed at 300 nm), 300 gr/mm (10.8 nm/mm, blazed at 300 i 500 nm)

OUTLINE Experimental set-up Samples Some physics: localized and band states of charge carriers UV i VUV spectroscopy of BaF 2 :Ce crystals: results and discussion Summary

Samples cut from larger boules: BaF 2 :0.05m%Ce, 0.2m%Na BaF 2 :0.015m%Ce Grown at Optovac, MA, USA donated by Prof. A. Łempicki of Boston University Scintillator, phosphor, laser material Not the best in any category, convenient as a model material: efficient host-ion energy transfer emission at nm, decay time ns, complex spectroscopy

OUTLINE Experimental set-up Samples Some physics: localized and band states of charge carriers UV i VUV spectroscopy of BaF 2 :Ce crystals: results and discussion Summary

Two kinds of electron states in solid state: 1.Delocalized band states; k-vector 2.Localized (trapped or self-trapped) states; configuration coordinate Q

k, wave vector E, electron energy E = E 0 – 2Acoskb Electron band states, linear model of the crystal A – electron transfer rate constant

Localized states (carrier trapped at impurity/defect or self-trapped) Additional (linear) term in energy, E lin = -kQ

Band states: electronic energy reduced, no lattice relaxation Localized states (self-trapped electrons or holes) lattice relaxation no electronic energy loss The question for a free charge carrier in any material is: localize or delocalize? Two extreme cases: Si and BaF 2

Si, broad cb i vb bands; a lot to gain by staying delocalized AND nothing to gain upon localization (no lattice relaxation; covalent bonds) Band (quantum mechanical) conduction: high mobility, low effective mass No self – trapping, no lattice relaxation gain upon trapping at impurity/defect

BaF 2 :Ce, narrow cb i vb bands; little to gain by staying delocalized AND large lattice relaxation (ionic bonds) hole/electron self-trapping, V k centers, F – H complexes Bandgap energy 10.6 eV (117 nm), band exciton (n = 1) 10eV (124 nm) Free excitons – band states (relaxation?) Bound excitons – combined band and localized states Electron – hole pairs – band states (relaxation?) Pay attention to 117 i 124 nm

OUTLINE Experimental set-up Samples Some physics: localized and band states of charge carriers UV i VUV spectroscopy of BaF 2 :Ce crystals: results and discussion Summary

### D:\Users\Torun\BFCeNa09.dat, started at , 02:11. ### Scan of ARC (0/0 grating) monochromator from to nm, with 1.00 nm steps. Using 4 channels, counting time 2.00 s. ### Primary monochromator: nm (6.199 eV). T Sample: K, Doris current: 0.00 mA. ### ### BF2Ce(0.05)Na(0.2) ### Exc 200 nm ### Temp 302 K ### 300/300 ### slits 0.4 mm RT, 200 nm

### D:\Users\Torun\BFCeNa02.dat, started at , 22:54. ### Scan of primary monochromator from to nm, with 0.20 nm steps. Using 6 channels, counting time 2.00 s. ### Monochromator Positions: ARC: nm (300/300), VUV: nm. T Sample: K, Doris current: 0.00 mA. ### ### BF2Ce(0.05)Na(0.2) ### Emi 323 nm ### Temp 306 K ### 300/300 ### slits 0.4 mm RT, 323 nm

Crystal field: octahedralcubictetrahedral

### D:\Users\Torun\BFCeNa03.dat, started at , 00:09. ### Scan of ARC (300/300 grating) monochromator from to nm, with 1.00 nm steps. Using 6 channels, counting time 2.00 s. ### Primary monochromator: nm (9.017 eV). T Sample: K, Doris current: 0.00 mA. ### ### BF2Ce(0.05)Na(0.2) ### Ex nm ### Temp 302 K ### 300/300 ### slits 0.4 mm RT, nm

### D:\Users\Torun\BFCeNa05.dat, started at , 00:43. ### Scan of ARC (300/300 grating) monochromator from to nm, with 1.00 nm steps. Using 6 channels, counting time 2.00 s. ### Primary monochromator: nm (9.611 eV). T Sample: K, Doris current: 0.00 mA. ### ### BF2Ce(0.05)Na(0.2) ### Exc 129 nm ### Temp 302 K ### 300/300 ### slits 0.4 mm RT, 129 nm

### D:\Users\Torun\BFCeNa07.dat, started at , 01:23. ### Scan of ARC (0/0 grating) monochromator from to nm, with 1.00 nm steps. Using 4 channels, counting time 2.00 s. ### Primary monochromator: nm ( eV). T Sample: K, Doris current: 0.00 mA. ### ### BF2Ce(0.05)Na(0.2) ### Exc 112,3 nm ### Temp 302 K ### 300/300 ### slits 0.4 mm RT, 112 nm

RT, 137.5, 112, 129 nm

D:\Users\Torun\BFCeNa02.dat, started at , 00:43 emi. 323 nm, black, total. D:\Users\Torun\BFCeNa02.dat, started at , 00:43 emi. 323 nm, red, slow. w. D:\Users\Torun\BFCeNa10.dat, started at , 02:48, emi. 400 nm, blue, total RT exc.

### D:\Users\Torun\BFCeA01.dat, started at , 14:40. ### Scan of primary monochromator from to nm, with 1.00 nm steps. Using 4 channels, counting time 2.00 s. ### Monochromator Positions: ARC: nm (300/300), VUV: nm. T Sample: K, Doris current: mA. ### BaF2:Ce (0.015%), black line ### D:\Users\Torun\BFNaCe01.dat, started at , 13:59. ### Scan of primary monochromator from to nm, with 0.50 nm steps. Using 4 channels, counting time 3.00 s. ### Monochromator Positions: ARC: nm (1200/300), VUV: nm. T Sample: K, Doris current: mA. ### BaF2:Ce(0.05):Na, red line RT, 320 nm e-h pairs

### D:\Users\Torun\BFCeA01.dat, started at , 14:40. ### Scan of primary monochromator from to nm, with 1.00 nm steps. Using 4 channels, counting time 2.00 s. ### Monochromator Positions: ARC: nm (300/300), VUV: nm. T Sample: K, Doris current: mA. ### BaF2:Ce (0.015%), black line ### D:\Users\Torun\BFNaCe01.dat, started at , 13:59. ### Scan of primary monochromator from to nm, with 0.50 nm steps. Using 4 channels, counting time 3.00 s. ### Monochromator Positions: ARC: nm (1200/300), VUV: nm. T Sample: K, Doris current: mA. ### BaF2:Ce(0.05):Na, red line RT, 320 nm e-h pairs

D:\Users\Torun\PBFCeNa01.dat, emi. 323 nm, exc. 200 nm RT

D:\Users\Torun\PBFCeNa01.dat, emi. 323 nm, exc nm, black. D:\Users\Torun\PBFCeNa02.dat, emi. 323 nm, exc nm, red. D:\Users\Torun\PBFCeNa03.dat, emi. 323 nm, exc. 129 nm, blue. RT

D:\Users\Torun\PBFCeNa01.dat, emi. 323 nm, exc nm, black. D:\Users\Torun\PBFCeNa02.dat, emi. 323 nm, exc nm, red. D:\Users\Torun\PBFCeNa03.dat, emi. 323 nm, exc. 129 nm, blue. RT

D:\Users\Torun\PBFCeNa01.dat, emi. 323 nm, exc nm, black. D:\Users\Torun\PBFCeNa02.dat, emi. 323 nm, exc nm, red. D:\Users\Torun\PBFCeNa03.dat, emi. 323 nm, exc. 129 nm, blue. RT

D:\Users\Torun\PBFCeNa07.dat, emi. 400 nm, exc. 129 nm, black. D:\Users\Torun\PBFCeNa03.dat, emi 323 nm, exc. 129 nm, blue. D:\Users\Torun\PBFCeNa05.dat, emi 323 nm, exc. 112 nm, red. RT

### D:\Users\Torun\BFCeNa13.dat, started at , 17:32. ### Scan of ARC (300/300 grating) monochromator from to nm, with 0.50 nm steps. Using 4 channels, counting time 2.00 s. ### Primary monochromator: nm (6.199 eV). T Sample: 9.78 K, Doris current: 0.00 mA. ### ### BF2:Ce (0.05)Na(0.2) ### Exc 200 nm ### Temp 10 K ### 300/300 ### slits 0.5 mm 10K Exc. 200 nm

### D:\Users\Torun\BFCeNa12.dat, started at , 16:07. ### Scan of primary monochromator from to nm, with 0.20 nm steps. Using 6 channels, counting time 2.00 s. ### Monochromator Positions: ARC: nm (300/300), VUV: nm. T Sample: 9.25 K, Doris current: 0.00 mA. ### ### BF2:Ce (0.05)Na(0.2) ### Emi 323 nm ### Temp 10 K ### 300/300 ### slits 1 mm 10K

### D:\Users\Torun\BFCeNa15.dat, started at , 18:36. ### Scan of ARC (0/0 grating) monochromator from to nm, with 0.50 nm steps. Using 4 channels, counting time 2.00 s. ### Primary monochromator: nm (9.393 eV). T Sample: 9.78 K, Doris current: 0.00 mA. ### ### BF2:Ce (0.05)Na(0.2) ### Exc 132 nm ### Temp 10 K ### 300/300 ### slits 0.5 mm 10K Exc. 132 nm

### D:\Users\Torun\BFCeNa17.dat, started at , 19:31. ### Scan of ARC (0/0 grating) monochromator from to nm, with 0.50 nm steps. Using 4 channels, counting time 2.00 s. ### Primary monochromator: nm ( eV). T Sample: K, Doris current: 0.00 mA. ### ### BF2:Ce (0.05)Na(0.2) ### Exc 114 nm ### Temp 10 K ### 300/300 ### slits 0.5 mm 10K Exc. 114 nm

PBFCeNa12.dat, emi exc. 200 nm black PBFCeNa13.dat, emi exc. 132 nm red PBFCeNa14.dat, emi exc. 114 nm blue 10K

PBFCeNa12.dat, emi exc. 200 nm black PBFCeNa13.dat, emi exc. 132 nm red PBFCeNa14.dat, emi exc. 114 nm blue 10K

PBFCeNa12.dat, emi exc. 200 nm 10K

PBFCeNa14.dat, emi exc. 114 nm black PBFCeNa15.dat, emi exc nm red PBFCeNa16.dat, emi exc nm green PBFCeNa17.dat, emi exc. 67 nm blue 10K

PBFCeNa16.dat, emi exc nm green 10K

### D:\Users\Torun\BFCeA09.dat, started at , 18:42, red line, emi nm. ### D:\Users\Torun\BFCeA08.dat, started at , 18:03, black line, exc nm. Exc. 291 nm – 34,400 cm-1 Emi. 303 nm – 33,000 cm-1 Stokes shift – 1400 cm-1 10K 0.015m%Ce

Summary Excitation spectra point to: dominant cubic crystal field, 10Dq about 15,000 cm -1, low symmetry component about cm -1 Stokes shift about 1400 cm -1 Three host-ion energy transfer channels 1) „bound exciton” 2) „band exciton” 3) electron –hole pairs plus 4) Direct excitation (no host involved)

Summary Excitation spectra point to: dominant cubic crystal field, 10Dq about 15,000 cm -1, low symmetry component about cm -1 Stokes shift about 1400 cm -1 Three host-ion energy transfer channels 1) „bound exciton” 2) „band exciton” 3) electron –hole pairs plus 4) Direct excitation (no host involved)

Summary Excitation spectra point to: dominant cubic crystal field, 10Dq about 15,000 cm -1, low symmetry component about cm -1 Stokes shift about 1400 cm -1 Three host-ion energy transfer channels 1) „bound exciton” 2) „band exciton” 3) electron –hole pairs plus 4) Direct excitation (no host involved)

Summary Excitation spectra point to: dominant cubic crystal field, 10Dq about 15,000 cm -1, low symmetry component about cm -1 Stokes shift about 1400 cm -1 Three host-ion energy transfer channels 1) „bound exciton” 2) „band exciton” 3) electron –hole pairs plus 4) Direct excitation (no host involved)

direct excitation: fast Ce emission, no rise time, no slow components „bound exciton” excitation: fast Ce emission, short rise time, no slow components „exciton” excitation: Ce and host emission, some fast component, dominant slow components „e-h pair” excitation: Ce and host emissions, fast and slow components, branching coefficient dependent on Ce concentration

direct excitation: fast Ce emission, no rise time, no slow components „bound exciton” excitation: fast Ce emission, short rise time, no slow components „exciton” excitation: Ce and host emission, some fast component, dominant slow components „e-h pair” excitation: Ce and host emissions, fast and slow components, branching coefficient dependent on Ce concentration

direct excitation: fast Ce emission, no rise time, no slow components „bound exciton” excitation: fast Ce emission, short rise time, no slow components „exciton” excitation: Ce and host emission, some fast component, dominant slow components „e-h pair” excitation: Ce and host emissions, fast and slow components, branching coefficient dependent on Ce concentration

direct excitation: fast Ce emission, no rise time, no slow components „bound exciton” excitation: fast Ce emission, short rise time, no slow components „exciton” excitation: Ce and host emission, some fast component, dominant slow components „e-h pair” excitation: Ce and host emissions, fast and slow components, branching coefficient dependent on Ce concentration