USDA-ARS, Stoneville, Mississippi

Slides:



Advertisements
Similar presentations
The Human Genome Project
Advertisements

Lecture 2 Strachan and Read Chapter 13
Applications of genome sequencing projects 1) Molecular Medicine 2) Energy sources and environmental applications 3) Risk assessment 4) Bioarchaeology,
applications of genome sequencing projects
An Introduction to the application of Molecular Markers
Fingerprinting and Markers for Floral Crop Improvement James W. Moyer Dept. of Plant Pathology North Carolina State University, Raleigh, NC
Microsatellites in the Mlp genome Pascal Frey, Constance Xhaard, Axelle Andrieux, Benoît Barrès, Fabien Halkett INRA Nancy Joint Research Unit « Tree –
DNA polymorphisms Insertion-deletion length polymorphism – INDEL Single nucleotide polymorphism – SNP Simple sequence repeat length polymorphism – mini-
Cloning lab results Cloning the human genome Physical map of the chromosomes Genome sequencing Integrating physical and recombination maps Polymorphic.
Mining SNPs from EST Databases Picoult-Newberg et al. (1999)
SNP Genotyping Without Probes by High Resolution Melting of Small Amplicons Robert Pryor 1, Michael Liew 2 Robert Palais 3, and Carl Wittwer 1, 2 1 Dept.
Generation and Analysis of AFLP Data
Integrated Physical and Genetic Mapping of Upland Cotton By Lei E and Roy. G. Cantrell presented by Mingxiong PANG Introduction Cotton is important in.
SSR.
Integrated Physical and Genetic Mapping of Upland Cotton Lei E Presented by Mingxiong PANG.
PLANT BIOTECHNOLOGY & GENETIC ENGINEERING (3 CREDIT HOURS)
PCR based Requiring sequence knowledge
DNA AMPLIFICATION MARKERS -RAPD -SSR/ISSR -FISH-DNA
Reading the Blueprint of Life
HAPLOID GENOME SIZES (DNA PER HAPLOID CELL) Size rangeExample speciesEx. Size BACTERIA1-10 Mb E. coli: Mb FUNGI10-40 Mb S. cerevisiae 13 Mb INSECTS.
Using mutants to clone genes Objectives 1. What is positional cloning? 2.What is insertional tagging? 3.How can one confirm that the gene cloned is the.
PLANT GENETIC MARKERS Plant Biotechnology Dr.Ir. Sukendah, MSc.
Howard Hughes Medical Institute-NMSU Research Scholar
Construction of an Enriched Microsatellite Library for the Lizard Sceloporus undulates erythrocheilus Wendy Jin, Matthew Rand, Stefano Zweifel Department.
Module 1 Section 1.3 DNA Technology
Differentiation of the Historic Alfalfa Germplasm Sources Using Microsatillites C. He, Z.L. Xia, T.A. Campbell, and G. Bauchan, Soybean Genomics and Improvement.
AFLP and microsatellite analysis. Amplified Fragment Length Polymorphism Pros: Large number of markers with relatively little lab effort No prior information.
Short Tandem Repeats (STR) and Variable Number Tandem Repeats (VNTR)
Chapter : DQA1/PM Chapter 18: Autosomal STR Profiling.
Linkage Mapping of the Angiotensin I Converting Enzyme Gene in Pig V.Q. Nguyen 1, K.L. Glenn 2, B.E. Mote 2, and M.F. Rothschild 2 1 Department of Biological.
Targeted next generation sequencing for population genomics and phylogenomics in Ambystomatid salamanders Eric M. O’Neill David W. Weisrock Photograph.
Chapter 6 PCR and in vitro Mutagenesis A. Basic features of PCR 1. PCR is a cell-free method of DNA cloning standard PCR reaction is a selective DNA amplification.
Molecular identification of living things. Molecular Markers Single locus marker Multi-locus marker RFLP Microsatellite DNA Fingerprinting AFLP RAPD.
Revision – Concept map.
SNP Haplotypes as Diagnostic Markers Shrish Tiwari CCMB, Hyderabad.
Development and Application of SNP markers in Genome of shrimp (Fenneropenaeus chinensis) Jianyong Zhang Marine Biology.
Announcements: Proposal resubmission deadline 4/23 (Thursday).
DNA-Based Identifications of Tilapia in Hawaii College of Tropical Agriculture and Human Resources University of Hawaii at Manoa Jinzeng Yang and Harry.
Oat Molecular Markers: Status and Opportunities Howard W. Rines USDA-ARS and Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul,
Experimental Design and Data Structure Supplement to Lecture 8 Fall
Finnish Genome Center Monday, 16 November Genotyping & Haplotyping.
François Ancien Sascha Kretzschmann Olivier Suplis Genotyping Errors Causes, Consequences and Solutions Genotyping Errors.
Lecture 6. Functional Genomics: DNA microarrays and re-sequencing individual genomes by hybridization.
Using a Single Nucleotide Polymorphism to Predict Bitter Tasting Ability Lab Overview.
Chapter 10: Genetic Engineering- A Revolution in Molecular Biology.
Molecular Markers CRITFC Genetics Workshop December 8, 2015.
Construction of a Microsatellite-Enriched Genomic Library of Physalis philadelphica Maria Chacon March
Simple-Sequence Length Polymorphisms SSLPs Short tandemly repeated DNA sequences that are present in variable copy numbers at a given locus. Scattered.
Synteny - many distantly related species have co- linear maps for portions of their genomes; co-linearity between maize and sorghum, between maize and.
Molecular Tools for Detection of Plant Pathogenic Fungi ByMAZIN.S.SELMAN.
Simple-Sequence Length Polymorphisms
Molecular Markers Using DNA polymorphisms in plant breeding
GENETIC MARKERS (RFLP, AFLP, RAPD, MICROSATELLITES, MINISATELLITES)
Molecular Marker Characterization of plant genotypes
Crystiana Tsujiura (’14) and Judy L. Stone
The is a Critical Resource for Developing and Refining Trait-Predictive DNA Tests Cameron Peace, Daniel Edge-Garza, Terry Rowland, Paul Sandefur.
Association between SSR markers and
Genotyping module.
DNA Marker Lecture 10 BY Ms. Shumaila Azam
Genemapper.
Relationship between Genotype and Phenotype
Polymerase Chain Reaction
Applied Molecular Genetics Molecular Marker and Technique
With Genetic Analyzers from Applied Biosystems
Molecular Biology lecture -Putnoky
DNA Polymorphisms: DNA markers a useful tool in biotechnology
Massively Parallel Sequencing: The Next Big Thing in Genetic Medicine
Michael J. Metzger, Carol Reinisch, James Sherry, Stephen P. Goff  Cell 
Relationship between Genotype and Phenotype
Shailaja Gantla, Conny T. M. Bakker, Bishram Deocharan, Narsing R
Presentation transcript:

USDA-ARS, Stoneville, Mississippi Measuring genetic variation of tarnished plant bug, Lygus lineolaris, over temporal and spatial scales O. P. Perera, Jeff Gore, Gordon Snodgrass & Brian Scheffler & Craig Abel USDA-ARS, Stoneville, Mississippi

Introduction

Introduction Very few markers suitable for population genetic studies available No microsatellite markers for H. virescens, Helicoverpa zea, or Lygus species

Introduction Simple Sequence Repeat (SSR) or microsatellite markers are widely used in population genetics Highly variable DNA regions Co-dominant markers Repeats of two to six nucleotides are commonly used

Methods Partial genomic libraries for each species Enrich the library for SSR sequences using biotin labeled repeat oligos and magnetic beads followed by PCR amplification

Oligonucleotide Sequences Methods Oligo Group (Hyb. Temp.) Oligonucleotide Sequences Group 1 (58C) (AC)13, (AACC)5, (AACG)5, (AAGC)5, (AAGG)5, (ATCC)5 Group 2 (52C) (AG)12, (AAC)6, (AAG)8, (ACT)12, (ATC)8 Group 3 (48C) (AAAC)6 , (AAAG)6, (AAAG)6, (AATC)6, (AATG)6, (ACAG)6, (ACCT)8, (ACTC)6, (ACTG)6 Group 4 (42C) (AAAT)8, (AACT)8, (AAGT)8, (ACAT)8, (AGAT)8

Genomic DNA Validate primer pairs Digest with 4-base cutter Analyze sequences and design primer pairs Ligate adapter to ends Clone & sequence Denature & hybridize with Biotin labeled SSR oligos Perform a 2nd round of Enrichment Magnetically capture repeat sequences hybridized to biotin labeled SSR oligos PCR amplify Enriched sequences

Methods Genotyping with ABI3730xl instrument and GeneMapper software Initial screening with pooled DNA samples of laboratory insects Selected primer pairs used for analyzing field samples Data analysis with PopGene v1.32

Results: H. virescens DNA sequences of 192 clones 147 clones contained repeats 96 primer pairs synthesized 20 polymorphic primer pairs producing 1 or 2 peaks per individual identified

Results: H. zea DNA sequences of 192 clones 34 primer pairs synthesized for 34 unique clones 12 polymorphic primer pairs producing 1 or 2 peaks per individual identified

Di-nucleotide AC 9 1 AG 6 Tri-nucleotide AAG 5 AGT 3 ATA ATG 39 GTT Repeat type Repeat Sequence H. virescens H. zea Di-nucleotide AC 9 1 AG 6 Tri-nucleotide AAG 5 AGT 3 ATA ATG 39 GTT TAA 2

Tetra-nucleotide ACAG 53 14 ACAT 1 3 ACGG CAAA 9 7 CAAC 4 CATA GATG 2 Repeat type Repeat Sequence H. virescens H. zea Tetra-nucleotide ACAG 53 14 ACAT 1 3 ACGG CAAA 9 7 CAAC 4 CATA GATG 2 GTCA GTTC TAAA TTAA Penta-nucleotide CTAAC TCCTC Octa-nucleotide TTTGTCTG   Total 147 32

Amplicon size range (bp) The sequence and the number of repeat units at each polymorphic locus and the amplicon size range observed in the test population of H. virescens (data for 8 loci shown). Locus (Repeat Sequence)Repeat # Amplicon size range (bp) 1 (TGA)7 169-188 2 (AACA)4 151-169 3 (CAT)7 167-177 4 (TCA)4 151-160 5 (TGA)4 165-224 6 168-202 7 (TC)10 171-191 8 (TGAC)4 159-180

Actual number of alleles ranged from 4 to 22 Effective number of alleles ranged from 3 to 12 Rare alleles contributed to reduced number of effective alleles

Locus Sample Size Ho He 1 156 0.2436 0.7285 2 134 0.2687 0.4887 3 146 0.2192 0.7999 4 162 0.2716 0.5772 5 86 0.2558 0.8244 6 138 0.3043 0.9275 7 148 0.2838 0.8557 8 168 0.3095 0.7375 Mean 142 0.2696 0.7424 St. Dev   0.0303 0.1459

Amplicon size range (bp) The sequence and the number of repeat units at each polymorphic locus and the amplicon size range observed in the test population of H. zea (data for 9 loci shown). Locus (Repeat Sequence)Repeat # Amplicon size range (bp) 1 (TGA)7 249-269 2 (AGTC)4 116-129 3 (ACAT)6 156-172 4 (GTTT)4 144-232 5 (GTTT)6 386-398 6 (ATT)4 133-136 7 (TCTG)4 117-121 8 (TCTG)6 211-252 9 (ATG)6 137-144

Actual number of alleles ranged from 2 to 6 Effective number of alleles ranged from 1.3 to 4.8

Locus Sample Size Ho He 1 182 0.1099 0.397 2 192 0.4688 0.5027 3 0.3125 0.3047 4 124 0.0806 0.0774 5 0.4062 0.5188 6 186 0.1075 0.1031 7 164 0.122 0.1158 8 190 0.1684 0.3736 9 144 0.0417 0.067 Mean 174 0.2020 0.2733 St. Dev. 0.1543 0.1851

Lygus lineolaris microsatellites Eight loci suitable for population genetics selected so far 192 insects from 2 populations analyzed Number of alleles ranged from 4 to 21 Effective number of alleles ranged from 1.2 to 11.0

Locus Repeat Sequence Sample size 1-15 (CA)8 358 0.2011 0.1909 1-26 Ho 1-15 (CA)8 358 0.2011 0.1909 1-26 (CA) 7 376 0.2181 0.2368 1-43 (CA) 9 368 0.8152 0.9095 2-15 (AGT) 4 374 0.5882 0.6167 2-47 (AGA) 6 370 0.6162 0.809 3-16 372 0.5914 0.7241 3-60 (GAT) 7 0.7473 0.8527 3-91 (GAT) 6 362 0.6077 0.7556 Mean 369 0.5482 0.6369 St_Dev   0.2243 0.2756

Inbreeding Coefficients for 2 Lygus populations Locus Sample Size Fis Fit Fst Nm* 1-15 358 -0.055 0.0006 388.75 1-26 376 0.0748 0.08 0.0057 43.828 1-43 368 0.0845 0.1018 0.0189 12.985 2-15 374 0.0357 0.0477 0.0124 19.842 2-47 370 0.2404 0.2417 0.0017 145.37 3-16 372 0.177 0.1827 0.007 35.677 3-60 0.1198 0.1218 0.0022 111.56 3-91 362 0.1923 0.1938 0.0018 135.83 Mean 369 0.1329 0.1391 0.0071 35.094 * Nm = Gene flow estimated from Fst = 0.25(1 - Fst)/Fst

Other Research in Progress Development of microsatellites for L. hesperus, Sirex noctillio, Solenopsis invicta and fungi carried by Sirex species (Amylosterium sp.) Development of SNP assays for gut-specific genes (EcoTILLING). Sequencing of mtDNA genomes of cotton pest species.

Future work Isolate and evaluate more SSR loci, possibly to obtain 1-3 loci/linkage group Develop SSR based linkage maps

Carlos Blanco Brian Scheffler Linda Ballard Mary Duke Acknowledgements Collaborators Carlos Blanco Brian Scheffler Technical Support Mid-South Area Genome Center Linda Ballard Mary Duke X. Liu Sheron Simpson SIMRU Torey Looft