NATS 101 Section 13: Lecture 16 Why does the wind blow? Part II.

Slides:



Advertisements
Similar presentations
Imbalance and Vertical Motion
Advertisements

Factors Affecting Wind
Chapter 6: Air Pressure and Winds
Class #5: Air pressure and winds Chapter 8 1Class #5 Tuesday, July 13, 2010.
Chapter 4. Atmospheric Pressure and Wind
What Makes the Wind Blow?
Air Pressure and Winds III
NATS Lecture 11 Newton’s Laws of Motion Upper-Air Winds.
Recitation Geostrophic Balance Thermal Wind Effect of Friction.
Air Pressure and Wind Pressure: the amount of force exerted per unit of surface area Pressure can be increased in 2 ways 1.By increasing density or decreasing.
NATS 101 Lecture 17 Curved Flow and Friction. Supplemental References for Today’s Lecture Gedzelman, S. D., 1980: The Science and Wonders of the Atmosphere.
Atmospheric Motion ENVI 1400: Lecture 3.
Natural Environments: The Atmosphere
NATS Lecture 13 Curved Flow and Friction Local winds.
Chapter 7 Atmospheric Pressure and Wind
Chapter 10: Atmospheric Dynamics
What Makes the Wind Blow? ATS 351 Lecture 8 October 26, 2009.
NATS 101 Lecture 17 Curved Flow and Friction. Supplemental References for Today’s Lecture Gedzelman, S. D., 1980: The Science and Wonders of the Atmosphere.
AOS101 Lecture 10. A severe thunderstorm is defined as a thunderstorm that produces - Hail of 1 inch diameter (in central US) or larger and/or wind gusts.
Chapter 8 Wind and Weather. Wind –The local motion of air relative to the rotating Earth Wind is measured using 2 characteristics –Direction (wind sock)
Warning! In this unit, we switch from thinking in 1-D to 3-D on a rotating sphere Intuition from daily life doesn’t work nearly as well for this material!
Atmospheric Force Balances
Ch 4 - Wind Introduction Introduction –The motion of air is important in many weather- producing processes. –Moving air carries heat, moisture, and pollutants.
Geostrophic Balance The “Geostrophic wind” is flow in a straight line in which the pressure gradient force balances the Coriolis force. Lower Pressure.
Force Balance (Chap. 6) ATM100. Topics of the Day ◦ Review Test 1 ◦ Newton’s Laws of Motion ◦ Review of vectors and forces ◦ Forces that act to move the.
Midterm #1 on Thursday!! - Bring your catcard
Atmospheric pressure and winds
Atmospheric Motions & Climate
What set the atmosphere in motion?. Review of last lecture Thickness of the atmosphere: less than 2% of Earth’s thickness Thickness of the atmosphere:
Imbalance and Vertical Motion
Chapter 6 Atmospheric Forces and Wind
Announcements Exam #1 will be handed back Wednesday or Friday.
Air Pressure and Winds. Atmospheric Pressure  What causes air pressure to change in the horizontal?  Why does the air pressure change at the surface?
Newton’s Laws of Motion Upper-Air Maps and Winds NATS 101 Lecture 12 Newton’s Laws of Motion Upper-Air Maps and Winds.
CHAPTER 7 ATMOSPHERIC MOTIONS CHAPTER 7 ATMOSPHERIC MOTIONS.
What set the atmosphere in motion?
Chapter 6: Air Pressure and Winds Atmospheric pressure Atmospheric pressure Measuring air pressure Measuring air pressure Surface and upper-air charts.
NATS 101 Section 13: Lecture 15 Why does the wind blow? Part I.
Atmospheric Motion SOEE1400: Lecture 7. Plan of lecture 1.Forces on the air 2.Pressure gradient force 3.Coriolis force 4.Geostrophic wind 5.Effects of.
AOSC 200 Lesson 6. p. 159 Fig. 6.3 Newton’s Laws First Law (Law of Inertia): A body at rest tends to stay at rest while a body in motion tends to.
The Wind: PGF Pressure gradient force is what sets air in motion
AOSS 401, Fall 2007 Lecture 11 October 1, 2007 Richard B. Rood (Room 2525, SRB) Derek Posselt (Room 2517D, SRB)
Lecture 7 Forces (gravity, pressure gradient force)
Announcements Midterm exam #1 will be given back in class Friday. First homework assignment due next Monday.
Isobars and wind barbs sea level pressure. factors affecting wind wind is the result of horizontal differences in pressure air flows from higher to lower.
Mid-Latitude Cyclones
Air Pressure and Winds II. RECAP Ideal gas law: how the pressure, the temperature and the density of an ideal gas relay to each other. Pressure and pressure.
Dynamics  Dynamics deals with forces, accelerations and motions produced on objects by these forces.  Newton’s Laws l First Law of Motion: Every body.
ATS/ESS 452: Synoptic Meteorology Wednesday 09/10/2014 Quiz! (Short?) Weather Discussion Continue Review Material Geostrophic Wind Continuity Vorticity.
Weather Basics Air Pressure and Winds. Air Pressure Air has a mass and exerts a force called atmospheric pressure Air pressure is measured in millibars.
PRESSURE & WIND, GENERAL CIRCULATION, JET STREAMS.
Understanding Weather and Climate 3rd Edition Edward Aguado and James E. Burt Anthony J. Vega.
Dynamics I: Basic forces
ATS/ESS 452: Synoptic Meteorology
High and Low Pressure Systems
Air Pressure And Wind Chapter 19.
Chapter 8 Air Pressure and Winds.
NATS Lecture 12 Curved Flow and Friction Local winds
NATS Lecture 12 Curved Flow and Friction Local winds
NATS 101 Lecture 17 Curved Flow and Friction
Atmospheric Forces Wind Relationships.
NATS 101 Lecture 16 Newton’s Laws of Motion Upper-Air Winds
NATS Lecture 11 Newton’s Laws of Motion Upper-Air Winds
Atmospheric Pressure Force exerted by the weight of the air above
NATS Lecture 11 Newton’s Laws of Motion Upper-Air Winds
NATS Lecture 11 Newton’s Laws of Motion Upper-Air Winds
Isobars and wind barbs sea level pressure.
NATS 101 Lecture 16 Newton’s Laws of Motion Upper-Air Winds
Intro. to Atmospheric Sciences Plymouth State University
Intro. to Meteorological Analysis– MT 2230 Plymouth State University
Presentation transcript:

NATS 101 Section 13: Lecture 16 Why does the wind blow? Part II

Last time we talked about two of the force terms in the simplified equation for horizontal air motion Geostrophic Balance: ________________ = ___________

Simplified equation of horizontal atmospheric motion TermForceCause 1Pressure gradient forceSpatial differences in pressure 2Coriolis forceRotation of the Earth 3Centripetal forceCurvature of the flow 4Friction forceActs against direction of motion due to interaction with surface (1)(2)(3)(4) FOCUS ON LAST TWO THIS TIME…

The centripetal force and friction force are typically much smaller, but they are very important for two reasons: 1.Cause mass divergence and convergence 2.Can be relatively large in special cases that are meteorologically important (i.e. cool)

MASS DIVERGENCEMASS CONVERGENCE INITIAL WIND FASTER WIND INITIAL WIND SLOWER WIND MASS LOSTMASS GAINED AIR RISING BELOW AIR SINKING ABOVE AIR RISING ABOVE AIR SINKING BELOW

Centripetal Force = Arises from a change in wind direction with a constant speed (v) due to the curvature of the flow around a radius (r) Center of circle V 1 Initial velocity V 2 Final velocity -V 1 V2V2 Centripetal acceleration (a) (towards the center of circle) The centripetal acceleration is always directed toward the center of the axis of rotation. Note to be physically correct, the expression should have a negative sign, so +V 2 /r is actually the centrifugal acceleration. a

CENTRIPETAL FORCE You experience acceleration without a change in speed, for example, on a tilt-a-whirl carnival ride. The force is directed toward the center of the wheel. An equal an opposite (fictitious) centrifugal force is exerted by the inertia of your body on the wheel—so you stay put and don’t fall off even when upside down. CENTRIFUGAL FORCE Centripetal Force

WINDS IN GEOSTROPIC BALANCE CENTRIPETAL ACCELERATION NEEDED ACCOUNT FOR THE CURVATURE OF THE FLOW

Assume PGF constant size along entire channel Height 1 Height 2 Flow around curved height iso-lines L H Centripetal acceleration (towards low pressure) Centripetal acceleration (towards high pressure) When wind curves, it must have an centripetal acceleration towards the axis of rotation, so it is NOT geostrophic.

Height 1 Height 2 Gradient Balance: Curved Flow WIND AROUND LOW PRESSURE Centripetal + PGF = Coriolis WIND AROUND HIGH PRESSURE Centripetal + Coriolis = PGF PGF Coriolis Cent. PGF Coriolis WIND

The effect of curvature has curious—and counter intuitive--implication for winds around high and low pressure, if the pressure gradient is constant

Changes in wind speed around highs and lows due to gradient balance WIND AROUND LOW PRESSURE Centripetal + PGF = Coriolis OR, better to think… PGF = Coriolis – Centripetal Effectively REDUCES the pressure gradient force Wind __________. WIND AROUND HIGH PRESSURE PGF = Centripetal + Coriolis Effectively INCREASES the pressure gradient force, Wind __________.

Height 1 Height 2 WIND AROUND LOW PRESSURE Centripetal + PGF = Coriolis WIND AROUND HIGH PRESSURE Centripetal + Coriolis = PGF PGF Coriolis Cent. SLOWEST WIND FASTEST WIND SLOWEST WIND AT THE BASE OF A TROUGH FASTEST WIND AT THE TOP OF THE RIDGE

Height 1 Height 2 PGF Coriolis Cent. SLOWEST WIND FASTEST WIND WIND INCREASES WIND DECREASES Because of the effect of centripetal force, winds increase to the east of trough and decrease to the east of a ridge. THERE MUST BE COMPENSATING VERTICAL MOTION DUE TO CHANGES IN WIND SPEED AHEAD OF THE TROUGH AN RIDGE.

MASS DIVERGENCEMASS CONVERGENCE INITIAL WIND FASTER WIND INITIAL WIND SLOWER WIND MASS DIVERGENCE AND COVERGENCE AT UPPER LEVELS (DUE TO CURVATURE OF THE FLOW) Stratosphere (acts as a lid) AIR RISING AIR SINKING AHEAD OF A _________AHEAD OF A ________

Height 1 Height 2 PGF Coriolis Cent. SLOWEST WIND FASTEST WIND WIND INCREASES MASS DIVERGENCE WIND DECREASES MASS CONVERGENCE RISING MOTION AHEAD OF TROUGH SINKING MOTION AHEAD OF RIDGE Relationship between upper level troughs and ridges and vertical motion

Relationship between upper level troughs and ridges and vertical motion SINKING MOTION TYPICALLY STABLE RISING MOTION MAY BE CONDITIONALLY UNSTABLE (if clouds form and air is saturated) SurfaceHigh Surface Low UPPER LEVEL ~300 mb SURFACE

Where would you expect to find rising and sinking air in relation to the troughs and ridges on this map?

SURFACE LOW (in Colorado) IS LOCATED ________________ OF TROUGH AT 300-MB, BECAUSE AIR IS _____________ AHEAD OF THE TROUGH UPPER LEVEL SURFACE

Gradient balance and flow around lows and highs (Northern Hemisphere) Cent. force Cent. force Cent. force Counterclockwise flow around lows Clockwise flow Around highs

Flow around low pressure Counterclockwise flow Clockwise flow (because Coriolis force reverses with respect to wind direction) NORTHERN HEMISPHERESOUTHERN HEMISPHERE

There is another force balance possibility if the Coriolis force is very small or zero, so it’s negligible. In that case, the pressure gradient force would balance the centripetal force.

Cyclostrophic Balance L Centrifugal force Pressure gradient force Pressure gradient balances the centrifugal force. Occurs where flow is on a small enough scale where the Coriolis force becomes negligible. PGF + centripetal force = 0 OR PGF = Centrifugal force Why is this special type of balance important?

Examples of Cyclostrophic Flow HURRICANES TORNADOES What about this one??

One last force to consider… Friction

Effect of Friction Force (at the surface) Friction acts to slow the wind at the surface The slower wind decreases the magnitude of the Coriolis force. Weaker Coriolis force no longer balances the pressure gradient force. Wind crosses the isobars, more toward the pressure gradient.

Surface friction and flow around surface highs and lows Air curves inward toward surface low pressure. Mass convergence and rising motion Air curves outward away from surface high pressure Mass divergence and sinking motion.

Zoom-in on surface low in Colorado from earlier.

Summary of Force Balances: Why the wind blows Force BalanceForces InvolvedWhere it happens GeostrophicPressure gradient and Coriolis Winds at upper levels (with no curvature) GradientPressure gradient, Coriolis, and centripetal (or centrifugal) Winds at upper levels with curvature. CyclostrophicPressure gradient and centrifugal Smaller-scale, tight rotations like tornadoes and hurricanes Gradient + Friction Pressure gradient, Coriolis, centripetal, and friction Surface winds

Reading Assignment and Review Questions Reading: Chapter 9