Theory of Multisource Crosstalk Reduction by Phase-Encoded Statics G. Schuster, X. Wang, Y. Huang, C. Boonyasiriwat King Abdullah University Science &

Slides:



Advertisements
Similar presentations
Multisource Full Waveform Inversion of Marine Streamer Data with Frequency Selection Multisource Full Waveform Inversion of Marine Streamer Data with Frequency.
Advertisements

Warping for Trim Statics
Multi-source Least-squares Migration with Topography Dongliang Zhang and Gerard Schuster King Abdullah University of Science and Technology.
Computational Challenges for Finding Big Oil by Seismic Inversion.
Utah Tomography and Modeling/Migration (UTAM) Consortium S. Brown, Chaiwoot B., W. Cao, W. Dai, S. Hanafy, G. Zhan, G. Schuster, Q. Wu, X. Wang, Y. Xue,
Multisource Full Waveform Inversion of Marine Streamer Data with Frequency Selection Multisource Full Waveform Inversion of Marine Streamer Data with Frequency.
Multi-source Least Squares Migration and Waveform Inversion
3D Super-virtual Refraction Interferometry Kai Lu King Abdullah University of Science and Technology.
Aerial View Eucalyi River, Peru Seismic View: 2 km Deep Meandering River.
Spectral Element Method and GPU Computing for Seismic Imaging Chaiwoot Boonyasiriwat May 1, 2010.
First Arrival Traveltime and Waveform Inversion of Refraction Data Jianming Sheng and Gerard T. Schuster University of Utah October, 2002.
Solving Illumination Problems Solving Illumination Problems in Imaging:Efficient RTM & in Imaging:Efficient RTM & Migration Deconvolution Migration Deconvolution.
TARGET-ORIENTED LEAST SQUARES MIGRATION Zhiyong Jiang Geology and Geophysics Department University of Utah.
Applications of Time-Domain Multiscale Waveform Tomography to Marine and Land Data C. Boonyasiriwat 1, J. Sheng 3, P. Valasek 2, P. Routh 2, B. Macy 2,
Migration Deconvolution vs Least Squares Migration Jianhua Yu, Gerard T. Schuster University of Utah.
1 Fast 3D Target-Oriented Reverse Time Datuming Shuqian Dong University of Utah 2 Oct
Multisource Least-squares Reverse Time Migration Wei Dai.
Multisource Least-Squares Migration Multisource Least-Squares Migration of Marine Streamer Data with Frequency-Division Encoding Yunsong Huang and Gerard.
Making the Most from the Least (Squares Migration) G. Dutta, Y. Huang, W. Dai, X. Wang, and Gerard Schuster G. Dutta, Y. Huang, W. Dai, X. Wang, and Gerard.
Overview of Multisource Phase Encoded Seismic Inversion Wei Dai, Ge Zhan, and Gerard Schuster KAUST.
Utah Tomography and Modeling/Migration (UTAM) Consortium S. Brown, C. Boonyasiriwat, W. Cao, W. Dai, S. Brown, C. Boonyasiriwat, W. Cao, W. Dai, S. Hanafy,
Superresolution Imaging with Resonance Scatterring Gerard Schuster, Yunsong Huang, and Abdullah AlTheyab King Abdullah University of Science and Technology.
Center for Subsurface Imaging and Fluid Modeling Shuyu Sun and GT Schuster 8 PhD students, 5 Research Fellows (Prof Sherif Hanafy, Dr. Chaiwoot.
Least-squares Migration and Least-squares Migration and Full Waveform Inversion with Multisource Frequency Selection Yunsong Huang Yunsong Huang Sept.
Least Squares Migration of Stacked Supergathers Wei Dai and Gerard Schuster KAUST vs.
Subwavelength Imaging using Seismic Scanning Tunneling Macroscope Field Data Example G. Dutta, A. AlTheyab, S. Hanafy, G. Schuster King Abdullah University.
Impact of MD on AVO Inversion
New Migration Deconvolution Filters Jianhua Yu University of Utah.
Prestack Migration Intuitive Least Squares Migration Green’s Theorem.
Multiples Waveform Inversion
Multisource Least-squares Migration of Marine Data Xin Wang & Gerard Schuster Nov 7, 2012.
Reverse Time Migration of Prism Waves for Salt Flank Delineation
Fast Least Squares Migration with a Deblurring Filter Naoshi Aoki Feb. 5,
Annual Meeting Utah Tomography and Modeling/Migration (UTAM) Feb. 5-6, 2009 N. Aoki, C. Boonyasiriwat, S. Brown, W. Cao, W. Dai, N. Aoki, C. Boonyasiriwat,
G. Schuster, S. Hanafy, and Y. Huang, Extracting 200 Hz Information from 50 Hz Data KAUST Rayleigh Resolution ProfileSuperresolution Profile Sinc function.
Center for Subsurface Imaging and Fluid Modeling (CSIM) Consortium G.T. Schuster and Shuyu Sun Cornea Goal: Fluid Flow Modeling + Seismic Imaging Goal:
Migration Velocity Analysis of Multi-source Data Xin Wang January 7,
Benefits & Limitations of Least Squares Migration W.Dai,D.Zhang,X.Wang,GTSKAUST RTM Least Squares RTM GOM RTM GOM LSRTM.
Least Squares Natural Migration (LSNM) of Surface Waves Zhaolun Liu
 = 0.5  j  r j (  kk’ (  m kk’ /  z) 2  m ii’ =  j  r j  r j /  m ii’ + (  kk’  m kk’ /  m ii’  m kk’ /  z) (1) m 11 m 12.
Non-local Means (NLM) Filter for Trim Statics Yunsong Huang, Xin Wang, Yunsong Huang, Xin Wang, Gerard T. Schuster KAUST Kirchhoff Migration Kirchhoff+Trim.
Fast Least Squares Migration with a Deblurring Filter 30 October 2008 Naoshi Aoki 1.
The Boom and Bust Cycles of Full Waveform Inversion: Is
LSM Theory: Overdetermined vs Underdetermined
Zero-Offset Data d = L o ò r ) ( g = d dr r ) ( g = d
HOCIGs and VOCIGs via Two-way Reverse Time Migration
Overview of Geophysical Research Research
Fast Multisource Least Squares Migration of 3D Marine Data with
Making the Most from the Least (Squares Migration)
Iterative Non-Linear Optimization Methods
Fast Multisource Least Squares Migration of 3D Marine Data with
Skeletonized Wave-equation Inversion for Q
Skeletonized Wave-Equation Surface Wave Dispersion (WD) Inversion
Interferometric Least Squares Migration
Overview of Multisource Phase Encoded Seismic Inversion
Migration Intuitive Least Squares Migration Green’s Theorem.
Non-local Means (NLM) Filter for Trim Statics
Overview of Multisource and Multiscale Seismic Inversion
Least-squares Reverse Time Migration with Frequency-selection Encoding for Marine Data Wei Dai, WesternGeco Yunsong Huang and Gerard T. Schuster, King.
Overview of Multisource and Multiscale Seismic Inversion
Processing of the Field Data using Predictive Deconvolution
PS, SSP, PSPI, FFD KM SSP PSPI FFD.
King Abdullah University of Science and Technology
Chaiwoot Boonyasiriwat
Center for Subsurface Imaging and Fluid Modeling (CSIM) Consortium
Non-local Means (NLM) Filter for Trim Statics
Super-virtual Refraction Interferometry: Theory
Least Squares Migration
Machine Learning and Wave Equation Inversion of Skeletonized Data
Wave Equation Dispersion Inversion of Guided P-Waves (WDG)
Presentation transcript:

Theory of Multisource Crosstalk Reduction by Phase-Encoded Statics G. Schuster, X. Wang, Y. Huang, C. Boonyasiriwat King Abdullah University Science & Technology

Outline 1. Seismic Experiment: L m = d N N 2. Standard vs Phase Encoded Least Squares Soln. L 1 L 2 d 1 d 2 m = vs N L + N L [ m = [N d + N d ] ]m = [N d + N d ] Theory Noise Reduction 4. Summmary and Road Ahead

Gulf of Mexico Seismic Survey m L m = d N N Time (s) 6 X (km) 4 0 d Goal: Solve overdetermined System of equations for m Predicted dataObserved data Problem: Expensive, one migration/shot gather migration/shot gather Solution: Supergather migration migration

Brief History Multisource Phase Encoded Imaging Romero, Ghiglia, Ober, & Morton, Geophysics, (2000) Krebs, Anderson, Hinkley, Neelamani, Lee, Baumstein, Lacasse, SEG, (2009) Virieux and Operto, EAGE, (2009) Dai and Schuster, SEG, (2009) Migration Waveform Inversion and Least Squares Migration Biondi et al., SEG, (2009)

Outline 1. Seismic Experiment: L m = d N N 2. Standard vs Phase Encoded Least Squares Soln. L 1 L 2 d 1 d 2 m = vs N L + N L [ m = [N d + N d ] ]m = [N d + N d ] Theory Noise Reduction 4. Summmary and Road Ahead

(k) Conventional Least Squares Solution: L= & d = Given: Lm=d Find: m s.t. min||Lm-d|| 2 Solution: m = [L L] L d TT m = m –  L (Lm - d) T(k+1)(k)(k)(k) or if L is too big Problem: L is too big for IO bound hardware L 1 L 2 d 1 d 2 = m –  L (L m - d ) = m –  L (L m - d ) (k) + L (L m - d ) TT [] In general, huge dimension matrix Note: subscripts agree

Conventional Least Squares Solution: L= & d = Given: Lm=d Find: m s.t. min||Lm-d|| 2 Solution: m = [L L] L d TT m = m –  L (Lm - d) T(k+1)(k)(k)(k) Problem: L is too big for IO bound hardware L 1 L 2d1 d 2 = m –  L (L m - d ) = m –  L (L m - d ) (k) + L (L m - d ) TT [] In general, huge dimension matrix Problem: Expensive, FD solve/CSG Solution: Blend+encode Data (k)

Blending+Phase Encoding 2 d = N d + N d + N d d = N d + N d + N d PhasePhase Blending Encoding Matrix Encoded supergather L = N L + N L + N L m[ ]m d1 L m=L m=L m=L m=1 Encoded supergather modelerd3 L m=L m=L m=L m=3d2 L m=L m=L m=L m=2 O(1/S) cost! Blending 1 e iwiw in w domain

(k)(k) (k) + Blended Phase-Encoded Least Squares Solution L = & d = N d + N d Given: L m= d Find: m s.t. min|| L m- d || 2 Solution: m = [ L L ] L d T TT (k+1)(k)(k)(k) or if L is too big 1 N L + N L 21 = m –  L (L m - d ) = m –  L (L m - d ) (k) + L (L m - d ) TT [] Crosstalk + L N N (L m - d ) 2 T 1 L N N (L m - d ) L N N (L m - d ) 1 T ** (k) In general, SMALL dimension matrix (k)(k) (k) Iterations are proxy For ensemble averaging(k+1)(k)(k)(k)(k) (k) (k) (k) (k) (k) (k) (k)(k) m = m –  L ( L m - d )

Outline 1. Seismic Experiment: L m = d N N 2. Standard vs Phase Encoded Least Squares Soln. L 1 L 2 d 1 d 2 m = vs N L + N L [ m = [N d + N d ] ]m = [N d + N d ] Theory Noise Reduction 4. Summary

Ensemble Average of Crosstalk Term With Random Time Shifts + Crosstalk: L N N (L m - d ) L N N (L m - d ) 2 T T ** N N 1 2* = e e -i w  2 iwiw 1 e i w(t - t ) 1 2 <> < > > = < e i w(t - t ) 1 2 = e -.25 s (t - t ) d t 12 ~ e - s w 22 e -i w  2 Gaussian PDF Noise Crosstalk term decreases with increasing  and  :

Crosstalk Prediction Formula L (L m - d ) 2 T L (L m - d ) 1 T 2 2 e -  2 O( ) ~ X =   Pt. Scatt. Stand. Mig.Pt. Scatt.. Mig. of Supergathers.  =.05 s  =.1 s  =.01 s X Offset

Ensemble Average of Crosstalk Term With Random Polarity + Crosstalk: L N N (L m - d ) L N N (L m - d ) 2 T T ** N N 1 2* 1 2 : <> = < > = 0 sgn(  Noise sgn(  Conclusion: Random polarity better than random time shifts Further Analysis: Variance of the crosstalk noise says that random polarity & random time shifts can be almost twice better than polarity alone <> N N 1 2* ( )2

0 6.75X (km) a) Standard migration (320 CSG) b) Time static σ = 0.1 s f) SNR 0.4 Z (km) 1.48 c) Noise 0.4 Z (km) X (km) X (km) 0.4 Z (km) X (km) 0.4 Z (km) X (km) e) Noise Time static σ (s) 0.18 SNR Z (km) 1.48 polarity Time static Polarity and time static Polarity+Time Statics+Location StaticsPolarity+Time StaticsPolarity  < +/- < +/-,  <  x Time Statics a) Polarity b) Noise d) Source polarity & static Key Theory+Num. Results for 320 CSG Supergather (Xin Wang, Yunsong Huang)

Key Results Theory of Multisource Imaging of Encoded Supergathers (Xin Wang) Sig/Noise = GI < GIN # geophones/supergather # subsupergatherss 0 6.7X (km) a) Image of 1 stack Iteration Number SNR c) Image of 50 stacks Z (km) X (km) 06.7 X (km) b) Image of 5 stacks d) SNR vs Iterations Observed Prediction # iterations Z (km) Bulk shift

Standard Migration SNR GS # geophones/CSG # CSGs SNR=... migrate SNR= d(t) = Zero-mean white noise [s(t) +n(t) ] [s(t) +n(t) ] Neglect geometric spreading Standard Migration SNR Assume: migrate stack S 1 S GS G ~ ~ iterate GI Iterative Multisrc. Mig. SNR # iterations SNR= Cost ~ O(S) Cost ~ O(I)

Outline 1. Seismic Experiment: L m = d N N 2. Standard vs Phase Encoded Least Squares Soln. L 1 L 2 d 1 d 2 m = vs N L + N L [ m = [N d + N d ] ]m = [N d + N d ] Theory Noise Reduction 4. Summary

SNR: VS3. GSGI Polarity+Time Statics+Location StaticsPolarity+Time StaticsPolarity  < +/- < +/-,  <  x Time Statics L 1 L 2 d 1 d 2 m = N L + N L [ m = [N d + N d ] ]m = [N d + N d ] Summary vs L (L m - d ) 2 T L (L m - d ) 1 T 2 2 e -  2 O( ) ~ 4. Passive Seismic Interferometry = Multisrc Imaging Imaging

IO 1 1/320 Cost ~ Resolution dx 1 1 SNR~ Stnd. Mig Multsrc. LSM Stnd. Mig Multsrc. LSM Less 1 1 <1/10 Cost vs Quality Summary 1 L 1 L 2 d 1 d 2 m = N L + N L [ m = [N d + N d ] ]m = [N d + N d ]

SNR 0 1 Number of Iterations The SNR of MLSM image grows as the square root of the number of iterations. SNR = GI

0 6.75X (km) a) Standard migration (320 CSG) b) Time static σ = 0.1 s f) SNR 0.4 Z (km) 1.48 c) Noise 0.4 Z (km) X (km) X (km) 0.4 Z (km) X (km) 0.4 Z (km) X (km) e) Noise Time static σ (s) 0.18 SNR Z (km) 1.48 polarity Time static Polarity and time static Polarity+Time Statics+Location StaticsPolarity+Time StaticsPolarity  < +/- < +/-,  <  x Time Statics a) Polarity b) Noise d) Source polarity & static Key Theory+Num. Results for 320 CSG Supergather (Xin Wang, Yunsong Huang)

Key Results Theory of Multisource Imaging of Encoded Supergathers (Xin Wang) Sig/Noise = GI < GIN # geophones/supergather # subsupergatherss 0 6.7X (km) a) Image of 1 stack Iteration Number SNR c) Image of 50 stacks Z (km) X (km) 06.7 X (km) b) Image of 5 stacks d) SNR vs Iterations Observed Prediction # iterations Z (km)

Key Results Theory of Multisource Imaging of Encoded Supergathers (Boonyasiriwat) Sig/Noise = GI < GIN 3.5 km Dynamic QMC Tomogram (99 CSGs/supergather) (99 CSGs/supergather) Dynamic Polarity Tomogram (1089 CSGs/supergather) 1/1000 1/300 # geophones/supergather # iterations # subsupergatherss

Multisource Migration: m mig =L T d Forward Model: Multisource Phase Encoded Imaging d +d =[ L +L ]m 1221 L {d { =[ L +L ](d + d ) TT = L d +L d TT L d +L d L d +L d212 1 Crosstalk noise Standard migration TT m = m + (k+1)(k)

Polarity+Time Statics+Location StaticsPolarity+Time StaticsPolarity Relative Merits of 4 Encoding Strategies  < +/- < +/-,  <  x d1 L m=L m=L m=L m=1d3 L m=L m=L m=L m=3d2 L m=L m=L m=L m=2 Time Statics supergather Supergather #2 Supergather #3 Supergather #4 Supergather #1 Polarity+Time Statics+Location StaticsPolarity+Time StaticsPolarity  < +/- < +/-,  <  x Time Statics

Multisource Migration: m mig =L T d Forward Model: Phase Encoded Multisource Migration d +d =[ L +L ]m 1221 L {d { =[ L +L ](d + d ) TT = L d +L d TT L d +L d L d +L d212 1 Crosstalk noise Standard migration TT m mig = L d +L d TT L d +L d L d +L d T T m mig = L d +L d m mig ++

Multisource Migration: m mig =L T d Forward Model: Phase Encoded Multisrce Least Squares Migration d +d =[ L +L ]m 1221 L {d { =[ L +L ](d + d ) TT m mig = L d +L d TT L d +L d L d +L d212 1 Crosstalk noise Standard migration TT m = m + (k+1)(k)

Outline 1. Seismic Experiment: L m = d N N 2. Standard vs Phase Encoded Least Squares Soln. L 1 L 2 d 1 d 2 m = vs N L + N L [ m = [N d + N d ] ]m = [N d + N d ] Theory Noise Reduction 4. Numerical Tests

RTM & FWI Problem & Possible Soln. Problem: RTM & FWI computationally costlyProblem: RTM & FWI computationally costly Solution: Multisource LSM & FWISolution: Multisource LSM & FWI Preconditioning speeds up by factor 2-3 LSM reduces crosstalk

Multisource Migration: m mig =L T d Forward Model: Multisource Least Squares Migration d +d =[ L +L ]m 1221 L {d { Standard migration Crosstalk term Phase encoding Kirchhoff kernel

Multisource Least Squares Migration Crosstalk term

Conventional Least Squares Solution: L= & d = Given: Lm=d Find: m s.t. min||Lm-d|| 2 Solution: m = [L L] L d TT m = m –  L (Lm - d) T(k+1)(k)(k)(k) or if L is too big Problem: L is too big for IO bound hardware L 1 L 2d1 d 2 = m –  L (L m - d ) = m –  L (L m - d ) (k) + L (L m - d ) TT [] In general, huge dimension matrix Note: subscripts agree

Key Results Theory of Multisource Imaging of Encoded Supergathers (Boonyasiriwat) Sig/Noise = GI < GIN 3.5 km Dynamic QMC Tomogram (99 CSGs/supergather) (99 CSGs/supergather) Dynamic Polarity Tomogram (1089 CSGs/supergather) 1/1000 1/300 # geophones/supergather # iterations # subsupergatherss