Cosmic Microwave Background Acoustic Oscillations, Angular Power Spectrum, Imaging and Implications for Cosmology Carlo Baccigalupi, March 31, 2004.

Slides:



Advertisements
Similar presentations
Primordial perturbations and precision cosmology from the Cosmic Microwave Background Antony Lewis CITA, University of Toronto
Advertisements

Constraining Inflation Histories with the CMB & Large Scale Structure Dynamical & Resolution Trajectories for Inflation then & now Dick Bond.
Planck 2013 results, implications for cosmology
Current Observational Constraints on Dark Energy Chicago, December 2001 Wendy Freedman Carnegie Observatories, Pasadena CA.
CMB but also Dark Energy Carlo Baccigalupi, Francesca Perrotta.
Temporal enhancement of super-horizon scale curvature perturbations from decays of two curvatons and its cosmological implications. Teruaki Suyama (Research.
Foreground cleaning in CMB experiments Carlo Baccigalupi, SISSA, Trieste.
Primordial Neutrinos and Cosmological Perturbation in the Interacting Dark-Energy Model: CMB and LSS Yong-Yeon Keum National Taiwan University SDSS-KSG.
CMB lensing and cosmic acceleration Viviana Acquaviva SISSA, Trieste.
Non-linear matter power spectrum to 1% accuracy between dynamical dark energy models Matt Francis University of Sydney Geraint Lewis (University of Sydney)
Cosmological Structure Formation A Short Course
The Physics of the cosmic microwave background Bonn, August 31, 2005 Ruth Durrer Départment de physique théorique, Université de Genève.
Is the Universe homogeneous and isotropic? Marc Kamionkowski (Caltech) Tsvi-fest, 17 December 2009 Statistically.
Lecture 2: Observational constraints on dark energy Shinji Tsujikawa (Tokyo University of Science)
The Statistically Anisotropic Curvature Perturbation from Vector Fields Mindaugas Karčiauskas Dimopoulos, MK, JHEP 07 (2008) Dimopoulos, MK, Lyth, Rodriguez,
Falsifying Paradigms for Cosmic Acceleration Michael Mortonson Kavli Institute for Cosmological Physics University of Chicago January 22, 2009.
CMB as a physics laboratory
Quintessence – Phenomenology. How can quintessence be distinguished from a cosmological constant ?
1 Latest Measurements in Cosmology and their Implications Λ. Περιβολαρόπουλος Φυσικό Τμήμα Παν/μιο Κρήτης και Ινστιτούτο Πυρηνικής Φυσικής Κέντρο Ερευνών.
Primordial density perturbations from the vector fields Mindaugas Karčiauskas in collaboration with Konstantinos Dimopoulos Jacques M. Wagstaff Mindaugas.
1 On the road to discovery of relic gravitational waves: From cosmic microwave background radiation Wen Zhao Department of Astronomy University of Science.
NEUTRINO MASS FROM LARGE SCALE STRUCTURE STEEN HANNESTAD CERN, 8 December 2008 e    
Separating Cosmological B-Modes with FastICA Stivoli F. Baccigalupi C. Maino D. Stompor R. Orsay – 15/09/2005.
Cosmology, University of Bologna – May Cosmology: Polarization of the Cosmic Microwave Background Steven T. Myers University of Bologna and the.
PHY306 1 Modern cosmology 4: The cosmic microwave background Expectations Experiments: from COBE to Planck  COBE  ground-based experiments  WMAP  Planck.
Trispectrum Estimator of Primordial Perturbation in Equilateral Type Non-Gaussian Models Keisuke Izumi (泉 圭介) Collaboration with Shuntaro Mizuno Kazuya.
Structure formation in dark energy cosmology La Magia, April 2005.
Dark Energy News on CMB and Structure Formation. Dark Energy Evidence.
Dark Energy The first Surprise in the era of precision cosmology?
Dark energy I : Observational constraints Shinji Tsujikawa (Tokyo University of Science)
US Planck Data Analysis Review 1 Lloyd KnoxUS Planck Data Analysis Review 9–10 May 2006 The Science Potential of Planck Lloyd Knox (UC Davis)
The Cosmic Microwave Background Lecture 2 Elena Pierpaoli.
Probing fundamental physics with CMB B-modes Cora Dvorkin IAS Harvard (Hubble fellow) Status and Future of Inflationary Theory workshop August 2014, KICP.
Forthcoming CMB experiments and expectations for dark energy Carlo Baccigalupi.
Cosmological structure formation and dark energy Carlo Baccigalupi Heidelberg, May 31, 2005.
Cosmic Microwave Background Carlo Baccigalupi, SISSA CMB lectures at TRR33, see the complete program at darkuniverse.uni-hd.de/view/Main/WinterSchoolLecture5.
University of Durham Institute for Computational Cosmology Carlos S. Frenk Institute for Computational Cosmology, Durham Galaxy clusters.
PHY306 1 Modern cosmology 4: The cosmic microwave background Expectations Experiments: from COBE to Planck  COBE  ground-based experiments  WMAP  Planck.
How the Universe got its Spots Edmund Bertschinger MIT Department of Physics.
CMB Overview: Cosmology with the CMB Professor George F. Smoot Ewha University & Academy of Advanced Studies LBNL & Physics Department University of California.
CMB as a dark energy probe Carlo Baccigalupi. Outline  Fighting against a cosmological constant  Parametrizing cosmic acceleration  The CMB role in.
Michael Doran Institute for Theoretical Physics Universität Heidelberg Time Evolution of Dark Energy (if any …)
the National Radio Astronomy Observatory – Socorro, NM
Cosmic Microwave Background Carlo Baccigalupi, SISSA CMB lectures at TRR33, see the complete program at darkuniverse.uni-hd.de/view/Main/WinterSchoolLecture5.
Primordial fluctuations 20  Isotropic 3K background. The most perfect blackbody we know Dipole (3.4 mK). Our motion relative to CMB.
Collaborators within DK-Planck community Lung-Yih Chiang (NBI) Andrei Doroshkevich (TAC,ASC FIRAN) Per Rex Christensen (NBI) Igor D. Novikov ( NBI) Pavel.
Racah Institute of physics, Hebrew University (Jerusalem, Israel)
The Planck Satellite Hannu Kurki-Suonio University of Helsinki Finnish-Japanese Workshop on Particle Cosmology, Helsinki
Cosmological structure formation and dark energy Carlo Baccigalupi Madrid, November 15, 2005.
Testing the slow roll inflation paradigm with the Big Bang Observer
Latest Results from LSS & BAO Observations Will Percival University of Portsmouth StSci Spring Symposium: A Decade of Dark Energy, May 7 th 2008.
Cosmology and Dark Matter III: The Formation of Galaxies Jerry Sellwood.
WMAP Cosmology Courtesy of NASA/WMAP Science Team map.gsfc.nasa.gov.
CMB, lensing, and non-Gaussianities
Probing Dark Energy with Cosmological Observations Fan, Zuhui ( 范祖辉 ) Dept. of Astronomy Peking University.
WG1 NuFact04, Osaka, July Neutrino mass and Cosmology: current bounds and future sensitivities Sergio Pastor (IFIC) ν.
What does the Cosmic Microwave Background tell us about our origin? Martin Kunz Université de Genève.
Dominic Galliano Supervisors: Rob Crittenden & Kazuya Koyama UK Cosmo, Tuesday 13 September 2011.
Cosmic Microwave Background Carlo Baccigalupi, SISSA CMB lectures at TRR33, see the complete program at darkuniverse.uni-hd.de/view/Main/WinterSchoolLecture5.
Cheng Zhao Supervisor: Charling Tao
N-body Simulations and Gravitational Lensing with Dark Energy Beyond Einstein Meeting, May 13, 2004.
Planck working group 2.1 diffuse component separation review Paris november 2005.
Smoke This! The CMB, the Big Bang, Inflation, and WMAP's latest results Spergel et al, 2006, Wilkinson Microwave Anisotropy Probe (WMAP) Three Year results:
Testing Primordial non-Gaussianities in CMB Anisotropies
12th Marcel Grossman Meeting,
Carlo Baccigalupi, SISSA
Cosmology from Large Scale Structure Surveys
Precision cosmology, status and perspectives
The impact of non-linear evolution of the cosmological matter power spectrum on the measurement of neutrino masses ROE-JSPS workshop Edinburgh.
CMB Anisotropy 이준호 류주영 박시헌.
Presentation transcript:

Cosmic Microwave Background Acoustic Oscillations, Angular Power Spectrum, Imaging and Implications for Cosmology Carlo Baccigalupi, March 31, 2004

Outline… Present: angular powerPresent: angular power Future: ImagingFuture: Imaging CMB cleaningCMB cleaning Primordial non-GaussianityPrimordial non-Gaussianity ReionizationReionization LensingLensing …

The Present CMB: Measuring Angular Power

Before And After The First Light

From COBE to WMAP Courtesy of the NASA/WMAP Science Team

WMAP Maps 23 GHz, 0.82 o, 6 mK/  N obs 33 GHz, 0.62 o, 3 mK/  N obs 41 GHz, 0.49 o, 2 mK/  N obs 61 GHz, 0.33 o, 1.4 mK/  N obs 94 GHz, 0.21 o, 1.4 mK/  N obs N obs ' 10 3 Courtesy of the NASA/WMAP Science Team

The CMB Angular Power Spctrum

Throwing Pebbles In The Primordial Pond Homogeneity & Isotropy Black Body Spectrum Courtesy of the NASA/WMAP Science Team

The Sound Of The Early Universe Isocurvature Adiabatic

+

The Window On The Early Universe  T/T /  /   0 on all scales

Cosmological Parameters Basic Analysis: h, n s, k ¢ dn s /dk,  b h 2,  m h 2, A,  WMAP, WMAP+ACBAR+CBI+2dF+Lyman  Extension: , m ,w DE, r h=0.71 § 0.06, n s =0.91 § 0.06, 0.93 § 0.03 k ¢ dn s /dk =...,  b h 2 =0.022 § 0.001, §  m h 2 =0.14 § 0.01, A=0.9 § 0.1,  =0.20 § 0.07, 0.17 § 0.06

Extension:  WMAP+ACBAR+CBI+HST+SNIa+(H 0 >50 km/sec/Mpc):  =1.02 § 0.02 Extension: m  Extension: w DE Extension: r WMAP+ACBAR+CBI+2dF:   h 2 =  i m i /93.5 eV < ´ m  <0.23 eV WMAP+ACBAR+CBI+HST+SNIa+2dF: w DE < WMAP+ACBAR+CBI+2dF+infl.cons.rel.: r < -0.71

Reionisation C l T / exp(-2  ) on l > l rh C l T,TE,E,B boosted on l < l rh  ' 0.12

The Future CMB: Imaging Cosmology

CMB Spectrum…

Reionization: Non-Gaussian Lensing: Non-GaussianPrimordial GWs Primordial Density Perts.: non-Gaussian?

CMB Spectrum…

Planck According To Dodelson & Hu 2003

True CMB…

WMAP CMB…

True CMB…

Planck CMB…

True CMB…

CMBpol CMB…

CMB Corrupted

The Future CMB: Foreground Removal

CMB Corrupted

Fast Independent Component Analysis (FastICA) x=As+n, find W such that Wx=s+Wn FastICA main loop: construct W row by row FastICA main loop: construct W row by row Choose initial w Update through w new =E[xg(w T x)]-wE(g’(w T x)) Compare with w. If not converged go back; if converged start up next row, keeping orthogonality

OUTIN FastICA on Planck Simulations Maino et al Planck nominal performance

See Baccigalupi et al for results with Planck nominal performance Component Separation in Polarisation

Perform Monte Carlo simulations to quantify the effect of noise distributionPerform Monte Carlo simulations to quantify the effect of noise distribution Build Criteria to Identify Physical Components in a Heavy Noise EnviromentBuild Criteria to Identify Physical Components in a Heavy Noise Enviroment Add priors to check quality and consistency of the resultsAdd priors to check quality and consistency of the results Extract Cosmological Parameters and Foreground ScienceExtract Cosmological Parameters and Foreground Science FastICA and COBE Maino et al. 2003

FastICA & COBE Maino et al BlindNon-Blind

The Future CMB: Imaging Physical Cosmology

Primordial non-Gaussianity Liguori et al  =  L +f NL (  L 2 - ) The simplest inflationary scenario predicts f NL ' WMAP: -58< f NL < -134 Planck forecast in progress

Imaging Reionization… 9.5 arcminutes  T/T Salvaterra, Ferrara et al in prep. Normal Stars in proto-galaxies 20% escape fraction CMB scattering on moving electorns  compatible with WMAP

Dark Energy & CMB: beyond C l s Giovi et al. 2003, PRD in press, astro-ph/

CMB bispectrum B l m l` m` l`` m`` =a lm a l`m` a l``m`` a lm = s  (  )Y lm (  )d  B l l`l`` =  m m` m`` ( m l m` l` m`` l`` ) a lm a l`m` a l``m`` l l` l``  (  ) ´  T(  )/T

CMB bispectrum & Structure Formation =0 =0  0  0

CMB bispectrum & Structure Formation =[(2l+1)(2l`+1)(2l``+1)/16  ] 1/2 ( 0 l 0 l` 0`` l`` ) ¢ =[(2l+1)(2l`+1)(2l``+1)/16  ] 1/2 ( 0 l 0 l` 0`` l`` ) ¢ ¢ [l(l+1)- l`(l`+1)+ l``(l``+1) ] C l Q(l``) +Perm. Q(l)= s 0 dec D(z) F(z) dz D(z)=[r(z dec )-r(z)]/r(z dec )r(z) 3 F(z)=dP  /dz| k=l/r(z) P  =(3  m0 /2) 2 (H 0 /ck) 4 P(k,z)(1+z) 2 P(k,z)=Ak n T(k,z) 2  (  ) =  lss (  +  )+  ISW '  lss (  )+ r  lss (  ) ¢   ISW (  )=2 s 0 dec dr d  (r,  )/d   =2 s 0 dec dr[(r-r dec )/r dec r]  r,  ) Hu & White 1997, Bartelmann & Schneider 2001, Komatsu & Spergel 2001, Verde & Spergel 2002

CMB bispectrum & Structure Formation l -1 =2  /k=r(z 3 )/l =2  /k=r(z 3 )/l =r(z 2 )/l =r(z 2 )/l =r(z 1 )/l =r(z 1 )/l r(z 1 ) r(z 2 ) r(z 3 ) z1z1z1z1 z2z2z2z2 z3z3z3z3 z r

CMB bispectrum line of sight chronology l -1 horizon crossing,  decaying linearly, dQ/dz>0 z !1 :super-horizon scales in a flat CDM universe, dP  /d  =0, dQ/dz ! 0 z r Non-linearity,  grows, dQ/dz<0 z ! 0, vanishes, dQ/dz ! 0 onset of acceleration, change in cosmic equation of state,  decaying linearly, dQ/dz>0

CMB bispectrum line of sight distribution Giovi et al. 2003, PRD in press, astro-ph/

CMB bispectrum & Dark Energy Quintessence reference models SUGRA RP

CMB bispectrum & Dark Energy Giovi et al. 2003, PRD in press, astro-ph/ Ma et al. 1999, Smith et al. 2003

CMB bispectrum & Dark Energy Giovi et al. 2003, PRD in press, astro-ph/

CMB bispectrum & Dark Energy Giovi et al. 2003, PRD in press, astro-ph/

CMB bispectrum & Dark Energy Giovi et al. 2003, PRD in press, astro-ph/

CMB bispectrum & Structure Formation =0 =0  0  0 Giovi, Liguori et al. 2004, in preparation  =2 s 0 dec dr[(r-r dec )/r dec r]  r,  )

Continua… Component Separation & WMAP…Component Separation & WMAP… Impact of CMB bispectrum on Planck Cosmological Parameter Estimation…Impact of CMB bispectrum on Planck Cosmological Parameter Estimation… Weakly Lensed CMB Templates, Semi-analytical…Weakly Lensed CMB Templates, Semi-analytical… Weakly Lensed CMB Templates, Numerical…Weakly Lensed CMB Templates, Numerical… Weakly Lensed CMB Templates, Polarisation…Weakly Lensed CMB Templates, Polarisation… Weakly Lensed CMB Templates, Comparison with Gravitational Wave Signal…Weakly Lensed CMB Templates, Comparison with Gravitational Wave Signal…