Cosmic Microwave Background Acoustic Oscillations, Angular Power Spectrum, Imaging and Implications for Cosmology Carlo Baccigalupi, March 31, 2004
Outline… Present: angular powerPresent: angular power Future: ImagingFuture: Imaging CMB cleaningCMB cleaning Primordial non-GaussianityPrimordial non-Gaussianity ReionizationReionization LensingLensing …
The Present CMB: Measuring Angular Power
Before And After The First Light
From COBE to WMAP Courtesy of the NASA/WMAP Science Team
WMAP Maps 23 GHz, 0.82 o, 6 mK/ N obs 33 GHz, 0.62 o, 3 mK/ N obs 41 GHz, 0.49 o, 2 mK/ N obs 61 GHz, 0.33 o, 1.4 mK/ N obs 94 GHz, 0.21 o, 1.4 mK/ N obs N obs ' 10 3 Courtesy of the NASA/WMAP Science Team
The CMB Angular Power Spctrum
Throwing Pebbles In The Primordial Pond Homogeneity & Isotropy Black Body Spectrum Courtesy of the NASA/WMAP Science Team
The Sound Of The Early Universe Isocurvature Adiabatic
+
The Window On The Early Universe T/T / / 0 on all scales
Cosmological Parameters Basic Analysis: h, n s, k ¢ dn s /dk, b h 2, m h 2, A, WMAP, WMAP+ACBAR+CBI+2dF+Lyman Extension: , m ,w DE, r h=0.71 § 0.06, n s =0.91 § 0.06, 0.93 § 0.03 k ¢ dn s /dk =..., b h 2 =0.022 § 0.001, § m h 2 =0.14 § 0.01, A=0.9 § 0.1, =0.20 § 0.07, 0.17 § 0.06
Extension: WMAP+ACBAR+CBI+HST+SNIa+(H 0 >50 km/sec/Mpc): =1.02 § 0.02 Extension: m Extension: w DE Extension: r WMAP+ACBAR+CBI+2dF: h 2 = i m i /93.5 eV < ´ m <0.23 eV WMAP+ACBAR+CBI+HST+SNIa+2dF: w DE < WMAP+ACBAR+CBI+2dF+infl.cons.rel.: r < -0.71
Reionisation C l T / exp(-2 ) on l > l rh C l T,TE,E,B boosted on l < l rh ' 0.12
The Future CMB: Imaging Cosmology
CMB Spectrum…
Reionization: Non-Gaussian Lensing: Non-GaussianPrimordial GWs Primordial Density Perts.: non-Gaussian?
CMB Spectrum…
Planck According To Dodelson & Hu 2003
True CMB…
WMAP CMB…
True CMB…
Planck CMB…
True CMB…
CMBpol CMB…
CMB Corrupted
The Future CMB: Foreground Removal
CMB Corrupted
Fast Independent Component Analysis (FastICA) x=As+n, find W such that Wx=s+Wn FastICA main loop: construct W row by row FastICA main loop: construct W row by row Choose initial w Update through w new =E[xg(w T x)]-wE(g’(w T x)) Compare with w. If not converged go back; if converged start up next row, keeping orthogonality
OUTIN FastICA on Planck Simulations Maino et al Planck nominal performance
See Baccigalupi et al for results with Planck nominal performance Component Separation in Polarisation
Perform Monte Carlo simulations to quantify the effect of noise distributionPerform Monte Carlo simulations to quantify the effect of noise distribution Build Criteria to Identify Physical Components in a Heavy Noise EnviromentBuild Criteria to Identify Physical Components in a Heavy Noise Enviroment Add priors to check quality and consistency of the resultsAdd priors to check quality and consistency of the results Extract Cosmological Parameters and Foreground ScienceExtract Cosmological Parameters and Foreground Science FastICA and COBE Maino et al. 2003
FastICA & COBE Maino et al BlindNon-Blind
The Future CMB: Imaging Physical Cosmology
Primordial non-Gaussianity Liguori et al = L +f NL ( L 2 - ) The simplest inflationary scenario predicts f NL ' WMAP: -58< f NL < -134 Planck forecast in progress
Imaging Reionization… 9.5 arcminutes T/T Salvaterra, Ferrara et al in prep. Normal Stars in proto-galaxies 20% escape fraction CMB scattering on moving electorns compatible with WMAP
Dark Energy & CMB: beyond C l s Giovi et al. 2003, PRD in press, astro-ph/
CMB bispectrum B l m l` m` l`` m`` =a lm a l`m` a l``m`` a lm = s ( )Y lm ( )d B l l`l`` = m m` m`` ( m l m` l` m`` l`` ) a lm a l`m` a l``m`` l l` l`` ( ) ´ T( )/T
CMB bispectrum & Structure Formation =0 =0 0 0
CMB bispectrum & Structure Formation =[(2l+1)(2l`+1)(2l``+1)/16 ] 1/2 ( 0 l 0 l` 0`` l`` ) ¢ =[(2l+1)(2l`+1)(2l``+1)/16 ] 1/2 ( 0 l 0 l` 0`` l`` ) ¢ ¢ [l(l+1)- l`(l`+1)+ l``(l``+1) ] C l Q(l``) +Perm. Q(l)= s 0 dec D(z) F(z) dz D(z)=[r(z dec )-r(z)]/r(z dec )r(z) 3 F(z)=dP /dz| k=l/r(z) P =(3 m0 /2) 2 (H 0 /ck) 4 P(k,z)(1+z) 2 P(k,z)=Ak n T(k,z) 2 ( ) = lss ( + )+ ISW ' lss ( )+ r lss ( ) ¢ ISW ( )=2 s 0 dec dr d (r, )/d =2 s 0 dec dr[(r-r dec )/r dec r] r, ) Hu & White 1997, Bartelmann & Schneider 2001, Komatsu & Spergel 2001, Verde & Spergel 2002
CMB bispectrum & Structure Formation l -1 =2 /k=r(z 3 )/l =2 /k=r(z 3 )/l =r(z 2 )/l =r(z 2 )/l =r(z 1 )/l =r(z 1 )/l r(z 1 ) r(z 2 ) r(z 3 ) z1z1z1z1 z2z2z2z2 z3z3z3z3 z r
CMB bispectrum line of sight chronology l -1 horizon crossing, decaying linearly, dQ/dz>0 z !1 :super-horizon scales in a flat CDM universe, dP /d =0, dQ/dz ! 0 z r Non-linearity, grows, dQ/dz<0 z ! 0, vanishes, dQ/dz ! 0 onset of acceleration, change in cosmic equation of state, decaying linearly, dQ/dz>0
CMB bispectrum line of sight distribution Giovi et al. 2003, PRD in press, astro-ph/
CMB bispectrum & Dark Energy Quintessence reference models SUGRA RP
CMB bispectrum & Dark Energy Giovi et al. 2003, PRD in press, astro-ph/ Ma et al. 1999, Smith et al. 2003
CMB bispectrum & Dark Energy Giovi et al. 2003, PRD in press, astro-ph/
CMB bispectrum & Dark Energy Giovi et al. 2003, PRD in press, astro-ph/
CMB bispectrum & Dark Energy Giovi et al. 2003, PRD in press, astro-ph/
CMB bispectrum & Structure Formation =0 =0 0 0 Giovi, Liguori et al. 2004, in preparation =2 s 0 dec dr[(r-r dec )/r dec r] r, )
Continua… Component Separation & WMAP…Component Separation & WMAP… Impact of CMB bispectrum on Planck Cosmological Parameter Estimation…Impact of CMB bispectrum on Planck Cosmological Parameter Estimation… Weakly Lensed CMB Templates, Semi-analytical…Weakly Lensed CMB Templates, Semi-analytical… Weakly Lensed CMB Templates, Numerical…Weakly Lensed CMB Templates, Numerical… Weakly Lensed CMB Templates, Polarisation…Weakly Lensed CMB Templates, Polarisation… Weakly Lensed CMB Templates, Comparison with Gravitational Wave Signal…Weakly Lensed CMB Templates, Comparison with Gravitational Wave Signal…