Monday, Oct. 11, 2010PHYS 1441-002, Fall 2010 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #10 Monday, Oct. 11, 2010 Dr. Jaehoon Yu Force of Friction.

Slides:



Advertisements
Similar presentations
PHYS 1441 – Section 002 Lecture #10 Wednesday, Feb. 20, 2013 Dr. Jaehoon Yu Newton’s Third Law Categories of forces Application of Newton’s Laws –Motion.
Advertisements

Dr. Steve Peterson Physics 1025F Mechanics NEWTON’S LAWS Dr. Steve Peterson
When a car accelerates forward on a level roadway, which force is responsible for this acceleration? State clearly which.
Wednesday, Feb. 25, 2009 PHYS , Spring 2009 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #8 Wednesday, Feb. 25, 2009 Dr. Jaehoon Yu Newton’s.
Chapter 5: The laws of motion
Wednesday, Oct. 20, 2010PHYS , Fall 2010 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #13 Wednesday, Oct. 20, 2010 Dr. Jaehoon Yu Motion in.
Unit 2 1D Vectors & Newton’s Laws of Motion. A. Vectors and Scalars.
Forces.
Thursday, June 16, 2011PHYS , Spring 2011 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #8 Thursday, June 16, 2011 Dr. Jaehoon Yu Motion Under.
Wednesday, Oct. 6, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Work done by a constant force 2.Scalar Product of Vectors 3.Work done by a varying force.
Tuesday, June 30, 2015PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #11 Tuesday, June 30, 2015 Dr. Jaehoon Yu Newton’s Law.
PHYS 1443 – Section 001 Lecture #12 Monday, March 21, 2011 Dr. Jaehoon Yu Today’s homework is homework #7, due 10pm, Tuesday, Mar. 29!! Work and Energy.
Part 2a: Newton and His Laws
Wednesday, Feb. 18, 2004PHYS , Spring 2004 Dr. Jaehoon Yu 1 PHYS 1441 – Section 004 Lecture #9 Wednesday, Feb. 18, 2004 Dr. Jaehoon Yu Chapter.
Wednesday, June 24, 2015 PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #9 Wednesday, June 24, 2015 Dr. Jaehoon Yu Newton’s.
Tuesday, Sept. 23, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #10 Tuesday, Sept. 23, 2014 Dr. Jaehoon Yu Newton’s Laws.
Wednesday, June 18, 2014 PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #9 Wednesday, June 18, 2014 Dr. Jaehoon Yu Newton’s.
Monday, Sept. 18, 2002PHYS , Fall 2002 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #5 Monday, Sept. 18, 2002 Dr. Jaehoon Yu 1.Newton’s Laws.
PHYS 1441 – Section 002 Lecture #9 Monday, Feb. 18, 2013 Dr. Jaehoon Yu Free Body Diagram Newton’s Third Law Categories of forces.
Tuesday, June 14, 2011PHYS , Spring 2011 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #6 Tuesday, June 14, 2011 Dr. Jaehoon Yu Newton’s Laws.
Monday, June 16, 2014PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #8 Monday, June 16, 2014 Dr. Jaehoon Yu What is the Force?
Wednesday, Mar. 5, 2008 PHYS , Spring 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #13 Wednesday, Mar. 5, 2008 Dr. Jaehoon Yu Static and.
Newton 2nd Law problems - Atwood Machines -Incline Planes -Tension Problems -Other Object Connected problems.
Monday, June 22, 2015PHYS , Summer 2015 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #8 Monday, June 22, 2015 Dr. Jaehoon Yu Newton’s Second.
Thursday, Sept. 18, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #9 Thursday, Sept. 18, 2014 Dr. Jaehoon Yu Newton’s Laws.
Monday, Oct. 25, 2010PHYS , Fall 2010 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #14 Monday, Oct. 25, 2010 Dr. Jaehoon Yu Work – Kinetic.
Lecture 9: Forces & Laws of Motion. Questions of Yesterday You must apply a force F to push your physics book across your desk at a constant velocity.
Friction What is friction?. Answer Me!!! Think of two factors that affect friction.
Unit 2 1D Vectors & Newton’s Laws of Motion. A. Vectors and Scalars.
Wednesday, June 7, 2006PHYS , Summer 2006 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #6 Wednesday, June 7, 2006 Dr. Jaehoon Yu Application.
Monday, Feb. 16, 2004PHYS , Spring 2004 Dr. Jaehoon Yu 1 PHYS 1441 – Section 004 Lecture #8 Monday, Feb. 16, 2004 Dr. Jaehoon Yu Chapter four:
Tuesday, June 24, 2014PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #12 Tuesday, June 24, 2014 Dr. Jaehoon Yu Work done by.
Wednesday, June 15, 2011 PHYS , Spring 2011 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #7 Wednesday, June 15, 2011 Dr. Jaehoon Yu Force of.
Wednesday, June 6, 2007PHYS , Summer 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #6 Wednesday, June 6, 2007 Dr. Jaehoon Yu Reference.
Monday, June 20, 2011PHYS , Spring 2011 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #9 Monday, June 20, 2011 Dr. Jaehoon Yu Work Done By A.
Monday, Oct. 8, 2007 PHYS , Fall 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #10 Monday, Oct. 8, 2007 Dr. Jaehoon Yu Uniform and Non-uniform.
Wednesday, Mar. 12, 2008 PHYS , Spring 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #15 Wednesday, Mar. 12, 2008 Dr. Jaehoon Yu Work done.
Wednesday June 15, PHYS , Summer I 2005 Dr. Andrew Brandt PHYS 1443 – Section 001 Lecture #9 Wednesday June 15, 2005 Dr. Andrew Brandt Lightning.
Thursday, June 7, 2007PHYS , Summer 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #7 Thursday, June 7, 2007 Dr. Jaehoon Yu Application.
PHYS 1441 – Section 002 Lecture #13 Monday, March 4, 2013 Dr. Jaehoon Yu Newton’s Law of Universal Gravitation Motion in Resistive Force Work done by a.
Monday, June 9, 2008PHYS , Summer 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #7 Monday, June 9, 2008 Dr. Jaehoon Yu Exam problem solving.
Monday, Mar. 3, 2008 PHYS , Spring 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #12 Monday, Mar. 3, 2008 Dr. Jaehoon Yu Types of Forces.
PHYS 1443 – Section 001 Lecture #7 Monday, February 21, 2011 Dr. Jaehoon Yu Categories of Forces Free Body Diagram Force of Friction Application of Newton’s.
Lesson 4.4 Everyday Forces Essential Question: What are some of the everyday forces?
Wednesday, Sept. 22, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Forces of Friction 2.Uniform and Non-uniform Circular Motions 3.Resistive Forces and.
Wednesday, Oct. 2, 2002PHYS , Fall 2002 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #6 Wednesday, Oct. 2, 2002 Dr. Jaehoon Yu 1.Newton’s laws.
PHYS 1443 – Section 001 Lecture #8 Wednesday, February 23, 2011 Dr. Jaehoon Yu Application of Newton’s Laws –Motion with friction Uniform Circular Motion.
Physics Section 4.4 Describe various types of forces Weight is a measure of the gravitational force exerted on an object. It depends upon the objects.
Wednesday, Oct. 13, 2010PHYS , Fall 2010 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #11 Wednesday, Oct. 13, 2010 Dr. Jaehoon Yu Force of.
Wednesday, Sept. 24, 2003PHYS , Fall 2003 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #9 Forces of Friction Uniform and Non-uniform Circular.
Monday, Sept. 20, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Newton’s Laws of Motion Gravitational Force and Weight Newton’s third law of motion 2.Application.
Monday, Sept. 29, PHYS , Fall 2008 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #8 Monday, Sept. 29, 2008 Dr. Jaehoon Yu Newton’s Laws.
Monday, Oct. 1, 2007 PHYS , Fall 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #9 Monday, Oct. 1, 2007 Dr. Jaehoon Yu Free Body Diagram.
PHYS 1441 – Section 002 Lecture #11 Monday, Feb. 25, 2013 Dr. Jaehoon Yu Application of Newton’s Laws Motion without friction Force of Friction Motion.
Monday, Mar. 30, 2009PHYS , Spring 2009 Dr. Jaehoon Yu PHYS 1441 – Section 002 Lecture #14 Monay, Mar. 30, 2009 Dr. Jaehoon Yu Work-Kinetic Energy.
Wednesday, Oct. 1, PHYS , Fall 2008 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #9 Wednesday, Oct. 1, 2008 Dr. Jaehoon Yu Free Body.
PHYS 1441 – Section 002 Lecture #10
PHYS 1441 – Section 002 Lecture #11
PHYS 1443 – Section 003 Lecture #8
PHYS 1441 – Section 002 Lecture #11
PHYS 1441 – Section 002 Lecture #11
PHYS 1441 – Section 002 Lecture #11
PHYS 1441 – Section 001 Lecture #6
Chapter 5: Force and Motion – I
PHYS 1443 – Section 003 Lecture #9
PHYS 1443 – Section 003 Lecture #8
PHYS 1441 – Section 001 Lecture #6
PHYS 1443 – Section 003 Lecture #10
PHYS 1441 – Section 001 Lecture #7
PHYS 1441 – Section 002 Lecture #13
Presentation transcript:

Monday, Oct. 11, 2010PHYS , Fall 2010 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #10 Monday, Oct. 11, 2010 Dr. Jaehoon Yu Force of Friction Application of Newton’s Laws Example for applications of Newton’s Laws –Example for Motion without friction –Example for Motion with friction Uniform Circular Motion Today’s homework is homework #6, due 10pm, Tuesday, Oct. 19!!

Announcements Quiz #2 Results –Class average: 17/30 Equivalent to: 57/100 –Top score: 30/30 Evaluation policy –Homework: 30% –Comprehensive final exam: 25% –One better of the two non-comprehensive term exam: 20% –Lab: 15% –Quiz:10% –Extra credit: 10% Colloquium this week Monday, Oct. 11, 2010PHYS , Fall 2010 Dr. Jaehoon Yu 2

Monday, Oct. 11, PHYS , Fall 2010 Dr. Jaehoon Yu

Monday, Oct. 11, 2010PHYS , Fall 2010 Dr. Jaehoon Yu 4 Reminder: Special Project for Extra Credit A large man and a small boy stand facing each other on frictionless ice. They put their hands together and push against each other so that they move apart. a) Who moves away with the higher speed and by how much? b) Who moves farther in the same elapsed time? Derive fomulae for the two problems above in much more detail than what is shown in this lecture note. Be sure to clearly define each variables used in your derivation. Each problem is 10 points each. Due is this Wednesday, Oct. 13.

Monday, Oct. 11, Applications of Newton’s Laws M Suppose you are pulling a box on frictionless ice, using a rope. T What are the forces being exerted on the box? Gravitational force: FgFg Normal force: n Tension force: T n= -F g T Free-body diagram F g =Mg Total force: F=F g +n+T=T If T is a constant force, a x, is constant n= -F g F g =Mg T What happened to the motion in y-direction? PHYS , Fall 2010 Dr. Jaehoon Yu

Monday, Oct. 11, 2010PHYS , Fall 2010 Dr. Jaehoon Yu When an object is in contact with a surface there is a force acting on that object. The component of this force that is parallel to the surface is called the friction force. Friction Force This resistive force is exerted on a moving object due to Always opposite to the movement!! viscosity or other types of frictional property of the medium in or surface on which the object moves. 6

Monday, Oct. 11, 2010PHYS , Fall 2010 Dr. Jaehoon Yu When the two surfaces are not sliding across one another the friction is called static friction. Static Friction 7 The resistive force exerted on the object up to the time just before the object starts moving.

Monday, Oct. 11, 2010PHYS , Fall 2010 Dr. Jaehoon Yu The magnitude of the static friction force can have any value from zero up to the maximum value. is called the coefficient of static friction. Magnitude of the Static Friction Kinetic friction applies during the move!! What is the unit? Once the object starts moving, there is NO MORE static friction!! None 8

Monday, Oct. 11, 2010PHYS , Fall 2010 Dr. Jaehoon Yu Note that the magnitude of the frictional force does not depend on the contact area of the surfaces. 9

Monday, Oct. 11, 2010PHYS , Fall 2010 Dr. Jaehoon Yu Static friction opposes the impending relative motion between two objects. is called the coefficient of kinetic friction. Kinetic Friction Kinetic friction opposes the relative sliding motions that is happening. The resistive force exerted on the object during its movement. What is the direction of friction forces? opposite to the movement 10 Normally much smaller than static friction!!

Monday, Oct. 11, 2010PHYS , Fall 2010 Dr. Jaehoon Yu Coefficient of Friction What are these? 11

Monday, Oct. 11, 2010 Forces of Friction Summary Resistive force exerted on a moving object due to viscosity or other types frictional property of the medium in or surface on which the object moves. Force of static friction, fs:fs: Force of kinetic friction, fkfk The resistive force exerted on the object until just before the beginning of its movement The resistive force exerted on the object during its movement These forces are either proportional to the velocity or the normal force. Empirical Formula What does this formula tell you? Frictional force increases till it reaches the limit!! Beyond the limit, the object moves, and there is NO MORE static friction but kinetic friction takes it over. Which direction does kinetic friction apply? Opposite to the motion! PHYS , Fall 2010 Dr. Jaehoon Yu 12

Monday, Oct. 11, Look at this problem again… M Suppose you are pulling a box on a rough surfice, using a rope. T What are the forces being exerted on the box? Gravitational force: FgFg Normal force: n Tension force: T n= -F g T Free-body diagram F g =Mg Total force: F=F g +n+T+F f If T is a constant force, a x, is constant n= -F g F g =Mg T PHYS , Fall 2010 Dr. Jaehoon Yu Friction force: FfFf FfFf FfFf

Monday, Oct. 11, 2010PHYS , Fall 2010 Dr. Jaehoon Yu 14 Example of Using Newton’s Laws A traffic light weighing 125 N hangs from the cable tied to two other cables fastened to a support. The upper cables make angles of 37.0 o and 53.0 o with the horizontal plane. Find the magnitudes of the tensions in the three cables. Free-body Diagram 53 o 37 o x y T1T1 T2T2 53 o T3T3 Newton’s 2 nd law x-comp. of net force y-comp. of net force

Monday, Oct. 11, 2010PHYS , Fall 2010 Dr. Jaehoon Yu 15 Example w/o Friction A crate of mass M is placed on a frictionless inclined plane of angle θ. a) Determine the acceleration of the crate after it is released. Free-body Diagram  x y M d a FgFg n n F= -Mg  Supposed the crate was released at the top of the incline, and the length of the incline is d. How long does it take for the crate to reach the bottom and what is its speed at the bottom? x y x y

Monday, Oct. 11, 2010 Example w/ Friction Suppose a block is placed on a rough surface inclined relative to the horizontal. The inclination angle is increased till the block starts to move. Show that by measuring this critical angle,  c, one can determine coefficient of static friction, μs.μs. Free-body Diagram  x y M a FgFg n n F= -Mg  Fs=μsnFs=μsn Net force x comp. y x y PHYS , Fall 2010 Dr. Jaehoon Yu 16