F – 1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Financial Analysis F For Operations Management, 9e by Krajewski/Ritzman/Malhotra.

Slides:



Advertisements
Similar presentations
Planning for Capital Investments Chapter 10. Copyright © 2003 McGraw-Hill Ryerson Limited, Canada 10-2 Capital Investment Decisions The purchase of long-term.
Advertisements

Financial and Managerial Accounting
Copyright © 2008 Prentice Hall All rights reserved 9-1 Capital Investment Decisions and the Time Value of Money Chapter 9.
McGraw-Hill/Irwin Slide 1 McGraw-Hill/Irwin Slide 1 Capital budgeting: Analyzing alternative long- term investments and deciding which assets to acquire.
© 2012 Pearson Prentice Hall. All rights reserved. Capital Budgeting and Cost Analysis.
© John Wiley & Sons, 2005 Chapter 12: Strategic Investment Decisions Eldenburg & Wolcott’s Cost Management, 1eSlide # 1 Cost Management Measuring, Monitoring,
© Mcgraw-Hill Companies, 2008 Farm Management Chapter 17 Investment Analysis.
Capital Investment Analysis 28. The Capital Investment Process OBJECTIVE 1: Define capital investment analysis, state the purpose of the minimum rate.
10-1 Fundamental Managerial Accounting Concepts Thomas P. Edmonds Bor-Yi Tsay Philip R. Olds Copyright © 2009 by The McGraw-Hill Companies, Inc. All rights.
Acct Chapter 10 Copyright © 2014 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of.
Chapter 17 Investment Analysis
Income Taxes in Capital Budgeting Decisions Chapter 15.
Investment Analysis Lecture: 9 Course Code: MBF702.
©2002 Prentice Hall Business Publishing, Introduction to Management Accounting 12/e, Horngren/Sundem/Stratton Chapter 11 Capital Budgeting.
© 2009 Pearson Prentice Hall. All rights reserved. Capital Budgeting and Cost Analysis.
CAPITAL BUDGETING AND CAPITAL BUDGETING TECHNIQUES FOR ENTERPRISE Chapter 5.
McGraw-Hill/Irwin 16-1 Noncash Expenses Not all expenses require cash outflows. The most common example is depreciation. Recall that High Country’s proposal.
©2003 Prentice Hall Business Publishing, Cost Accounting 11/e, Horngren/Datar/Foster Capital Budgeting and Cost Analysis Chapter 21.
CHAPTER 21 Capital Budgeting and Cost Analysis To accompany Cost Accounting 12e, by Horngren/Datar/Foster. Copyright © 2006 by Pearson Education.
©2005 Prentice Hall Business Publishing, Introduction to Management Accounting 13/e, Horngren/Sundem/Stratton Copyright © 2014 Pearson Education,
McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., 2006 Capital Budgeting and Managerial Decisions Chapter 25.
© 2012 Pearson Prentice Hall. All rights reserved Internal Rate of Return (IRR) The Internal Rate of Return (IRR) is a sophisticated capital budgeting.
©The McGraw-Hill Companies, Inc. 2006McGraw-Hill/Irwin Chapter Ten Planning for Capital Investments.
WHY DIDN’T I THINK OF THAT? What does every baseball player need to complete the uniform? A cap. What a business opportunity for C&C Sports! Or is it?
Project Cash Flow – Incremental Cash Flow (Ch – 10.7) 05/22/06.
4 C H A P T E R Capital Investment Decisions.
Chapter 3 – Opportunity Cost of Capital and Capital Budgeting
Financial and Managerial Accounting Wild, Shaw, and Chiappetta Fifth Edition Wild, Shaw, and Chiappetta Fifth Edition McGraw-Hill/Irwin Copyright © 2013.
Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall. Chapter 21 1.
Capital Budgeting and Investment Analysis
ACCTG101 Revision MODULES 10 & 11 TIME VALUE OF MONEY & CAPITAL INVESTMENT.
©2002 Prentice Hall Business Publishing, Introduction to Management Accounting 12/e, Horngren/Sundem/Stratton Chapter 11 Capital Budgeting.
Chapter 21 Capital Budgeting and Cost Analysis. Project and Time Dimensions of Capital Budgeting.
Copyright © The McGraw-Hill Companies, Inc 2011 CAPITAL BUDGETING DECISIONS Chapter 13.
© 2014 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license.
8- 1  2001 Prentice Hall Business Publishing Management Accounting, 3/E, Atkinson, Banker, Kaplan, and Young Capital Budgeting Chapter 8.
Income Taxes and Capital Budgeting Oleh Bambang Kesit Chapter 12.
Capital Budgeting Decisions
Chapter McGraw-Hill/Irwin Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved. The Capital Budgeting Decision 12.
$$ Entrepreneurial Finance, 5th Edition Adelman and Marks 10-1 Pearson Higher Education ©2010 by Pearson Education, Inc. Upper Saddle River, NJ Capital.
Chapter 20. Describe the importance of capital investments and the capital budgeting process.
ACCT 2302 Fundamentals of Accounting II Spring 2011 Lecture 21 Professor Jeff Yu.
Capital Budgeting The Capital Budgeting Decision Time Value of Money Methods of Capital Project Evaluation Cash Flows Capital Rationing The Value of a.
Opportunity Cost of Capital and Capital Budgeting Chapter Three Copyright © 2014 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin.
$$ Entrepreneurial Finance, 4th Edition By Adelman and Marks PRENTICE HALL ©2007 by Pearson Education, Inc. Upper Saddle River, NJ Capital Budgeting.
McGraw-Hill/Irwin © 2008 The McGraw-Hill Companies, Inc., All Rights Reserved. 1-1 McGraw-Hill/Irwin © 2008 The McGraw-Hill Companies, Inc., All Rights.
Warren Reeve Duchac Accounting 26e Capital Investment Analysis 26 C H A P T E R human/iStock/360/Getty Images.
Capital Expenditure Decisions Chapter 16 Copyright © 2014 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior.
19-1 Capital Investment Payback and Accounting Rate of Return: Nondiscounting Methods 2 Payback Period: the time required for a firm to recover.
Chapter 8 Capital Asset Selection and Capital Budgeting.
20-1 HANSEN & MOWEN Cost Management ACCOUNTING AND CONTROL.
©2005 Prentice Hall Business Publishing, Introduction to Management Accounting 13/e, Horngren/Sundem/Stratton ©2008 Prentice Hall Business Publishing,
Capital Budgeting. Typical Capital Budgeting Decisions Capital budgeting tends to fall into two broad categories...  Screening decisions. Does a proposed.
1 Chapter Nine Capital Budgeting. 2 Capital Budgeting Decisions require sizable commitments of cash. are expected to generate returns that will last more.
1 Introduction to Accounting and Business 26 Capital Investment Analysis Student Version.
CHAPTER 10 PowerPoint Author: LuAnn Bean, Ph.D., CPA, CIA, CFE Copyright © 2014 McGraw-Hill Education. All rights reserved. No reproduction or distribution.
PowerPoint Authors: Susan Coomer Galbreath, Ph.D., CPA Charles W. Caldwell, D.B.A., CMA Jon A. Booker, Ph.D., CPA, CIA Cynthia J. Rooney, Ph.D.,
To Accompany Krajewski & Ritzman Operations Management: Strategy and Analysis, Seventh Edition © 2004 Prentice Hall, Inc. All rights reserved. Financial.
©2005 Prentice Hall Business Publishing, Introduction to Management Accounting 13/e, Horngren/Sundem/Stratton Capital Budgeting Chapter 11.
CHAPTER © jsnyderdesign / iStockphoto 9 CAPITAL BUDGETING.
Financial Analysis Supplement F Copyright ©2013 Pearson Education, Inc. publishing as Prentice HallF- 01.
CAPITAL BUDGETING DECISIONS CHAPTER Typical Capital Budgeting Decisions Plant expansion Equipment selection Equipment replacement Lease or buy Cost.
© John Wiley & Sons, 2011 Chapter 12: Strategic Investment Decisions Eldenburg & Wolcott’s Cost Management, 2eSlide # 1 Cost Management Measuring, Monitoring,
Copyright © 2006, The McGraw-Hill Companies, Inc.McGraw-Hill/Irwin BNFO 621: Business and Entrepreneurship : ACCOUNTING Roxanne M. Spindle Associate Professor.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. Chapter Twenty-four Planning for Capital Investments.
Capital Budgeting and Cost Analysis
Capital Budgeting and Cost Analysis
Capital Budgeting and Cost Analysis
Planning for Capital Investments
Other Long-Run Decisions
Presentation transcript:

F – 1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Financial Analysis F For Operations Management, 9e by Krajewski/Ritzman/Malhotra © 2010 Pearson Education PowerPoint Slides by Jeff Heyl

F – 2 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Time Value of Money Future value of an investment  Compounded interest  The value of an investment at the end of the period  Requires all values be in the same units of time The value of a $5,000 investment at 12 percent per year, 1 year from now is $5,000(1.12) = $5,600 If the entire amount remains invested, at the end of 2 years you would have $5,600(1.12) = $5,000(1.12) 2 = $6,272

F – 3 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. F = P (1 + r ) n where F = future value of the investment at the end of n periods P = amount invested at the beginning, called the principal r = periodic interest rate n = number of time periods for which the interest compounds Time Value of Money In general,

F – 4 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. 500(1 +.06) 5 = 500(1.338) = $ Application F.1 Future Value of a $500 Investment in 5 Years P = $500 r = 6% n = 5 F = P (1 + r ) n SOLUTION

F – 5 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Present Value of a Future Amount The amount that must be invested now to accumulate to a certain amount in future at a specified interest rate Discounting is the process of finding the present value of an investment when the future value and the interest rate are known An investment worth $10,000 at the end of 1 year if the interest rate is 12 percent F = $10,000 = P ( )

F – 6 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. where F = future value of the investment at the end of n periods P = amount invested at the beginning, called the principal r = periodic interest rate (discount rate) n = number of time periods for which the interest compounds P =P = F (1 + r ) n Present Value of a Future Amount In general, The interest rate is also called the discount rate

F – 7 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. $500/1.338 =$ Application F.2 P =P = F (1 + r ) n F = $500 r = 6% n = 5 Present Value of $500 Received in Five Years SOLUTION

F – 8 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. [ 1/(1 + r ) n ] is the present value factor (pf) Found in Table F.1 Present Value Factors The present value of a future amount

F – 9 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Present Value Factors TABLE F.1 | PRESENT VALUE FACTORS FOR A SINGLE PAYMENT (Partial) Number of Periods ( n ) Interest Rate ( r )

F – 10 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Present Value Factors An investment will generate $15,000 in 10 years If the interest rate is 12 percent, Table F.1 shows that pf = The present value is P = F (pf) = $15,000(0.3220) = $4,830

F – 11 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Application F.2 $500(.7473) =$ P =P = F (1 + r ) n F = $500 r = 6% n = 5 pf=.7473 Present Value of $500 Received in Five Years SOLUTION

F – 12 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Present Value Factors TABLE F.1 | PRESENT VALUE FACTORS FOR A SINGLE PAYMENT (Partial) Number of Periods ( n ) Interest Rate ( r ) For Application F.2

F – 13 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Annuities A series of payments of a fixed amount for a specified number of years At a 10% interest rate, how much needs to be invested so that you may draw out $5,000 per year for each of the next 4 years? = $4,545 + $4,132 + $3,757 + $3,415 = $15,849

F – 14 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. P = A (af) where P = present value of an investment A = amount of the annuity received each year af= present value factor for an annuity Annuities Find the present value of an annuity (af) using Table F.2 Multiply the amount received each year (A) by the present value factor So P = A (af) = $5,000(3.1699) = $15,849

F – 15 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Present Value Factors TABLE F.2 | PRESENT VALUE FACTORS OF AN ANNUITY (Partial) Number of Periods ( n ) Interest Rate ( r )

F – 16 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Application F.3 Present Value of a $500 Annuity for 5 Years P = A (af) A = $500 for 5 years at 6% af = (from table) P = SOLUTION $500(4.2124) = $2,106.20

F – 17 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Two important points 1.Consider only incremental cash flows 2.Convert cash flows to after-tax amounts Techniques of Analysis Three basic financial analysis techniques Work with cash flow 1.Net present value method 2.Internal rate of return method 3.Payback method

F – 18 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Depreciation is an allowance for the consumption of capital Not a cash flow but it does affect net income Straight-line depreciation Salvage value is the cash flow from disposal at the end useful life General expression for annual depreciation Depreciation and Taxes where D =annual depreciation I =amount of investment S =salvage value n =number of years of project life

F – 19 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Accelerated depreciation or Modified Accelerated Cost Recovery System (MACRS)  3-year class  5-year class  7-year class  10-year class Depreciation and Taxes Income-tax rate varies with location Include all relevant income taxes in analysis

F – 20 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Accelerated Depreciation TABLE F.3 | MACRS DEPRECIATION ALLOWANCES Class of Investment Year3-Year5-Year7-Year10-Year %

F – 21 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Analysis of Cash Flows Four steps Step 1:Subtract the new expenses attributed to the project from new revenues Step 2:Subtract the depreciation to get pre- tax income Step 3:Subtract taxes to get net operating income (NOI) Step 4:Compute the total after-tax cash flow by adding back depreciation, i.e., NOI + D

F – 22 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Calculating After-Tax Cash Flows EXAMPLE F.1 A local restaurant is considering adding a salad bar. The investment required to remodel the dining area and add the salad bar will be $16,000. Other information about the project is as follows: 1.The price and variable cost are $3.50 and $ Annual demand should be about 11,000 salads 3.Fixed costs, other than depreciation, will be $8,000 4.The assets go into the MACRS 5-year class for depreciation purposes with no salvage value 5.The tax rate is 40 percent 6.Management wants to earn a return of at least 14 percent Determine the after-tax cash flows for the life of this project

F – 23 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Calculating After-Tax Cash Flows SOLUTION The cash flow projections are shown in the following table. Depreciation is based on Table F.3. For example, depreciation in 2009 is $3,200 (or $16,000  0.20). The cash flow in 2014 comes from depreciation’s tax shield in the first half of the year.

F – 24 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Calculating After-Tax Cash Flows Year Item Initial Information Annual demand (salads) 11,000 Investment$16,000 Interest (discount) rate 0.14 Cash Flows Revenue$38,500 Expenses: Variable costs 22,000 Expenses: Fixed costs 8,000 Depreciation ( D )3,2005,1203,0721, Pretax income$5,300$3,380$5,428$6,657 – $922 Taxes (40%)2,1201,3522,1712,663 – 369 Net operating income (NOI) $3,180$2,208$3,257$3,994 – $533 Total cash flow (NOI + D ) $6,380$7,148$6,329$5,837 $369

F – 25 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Net Present Value Method NPV = the original investment – the present values of all after-tax cash flows  If the result is positive for the discount rate used, the project earns a higher rate of return than the discount rate The discount rate that represents the lowest desired rate of return on an investment is called the hurdle rate

F – 26 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Application F.4 Find the NPV for Example Project SOLUTION Year 1: $500 Year 2: $650 Year 3: $900 The discount rate is 12%, and the initial investment is $1,550, so the project’s NPV is: Present value of investment (Year 0): Present value of Year 1 cash flow: Present value of Year 2 cash flow: Present value of Year 3 cash flow: Project NPV: ($1,550.00) $ 55.20

F – 27 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Internal Rate of Return The IRR is the discount rate that makes the NPV of a project zero.  A project is successful only if the IRR exceeds the hurdle rate. The IRR can be found by trial and error, beginning with a low discount rate and calculating the NPV. If the result is greater than zero, try again with a higher discount rate. Repeat until you are near or at zero.

F – 28 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Application F.5 IRR for Example Project SOLUTION Discount RateNPV 10%= 12%= 14%=

F – 29 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Application F.5 IRR for Example Project SOLUTION Discount RateNPV 10%= 12%= 14%= $500(0.9091) + $650(0.8264) + $900(0.7513)$ $500(0.8929) + $650(0.7972) + $900(0.7188)$55.20 $500(0.8772) + $650(0.7695) + $900(0.6750)($3.72)

F – 30 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Payback Method This is a means of determining how much time will elapse before the total after-tax cash flows will equal, or pay back, the initial investment  Payback is widely used, but often criticized for encouraging a focus on the short run

F – 31 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Calculating NPV, IRR, Payback Period EXAMPLE F.2 What are the NPV, IRR, and payback period for the salad bar project in Example F.1? SOLUTION Management wants to earn a return of at least 14 percent on its investment, so we use that rate to find the pf values in Table F.1. The present value of each year’s total cash flow and the NPV of the project are as follows: 2009:$6,380(0.8772)=$5, :$7,148(0.7695)=$5, :$6,329(0.6750)=$4, :$5,837(0.5921)=$3, :$5,837(0.5194)=$3, :$369(0.4556)=$168

F – 32 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Calculating NPV, IRR, Payback Period NPV of project = ($5,597 + $5,500 + $4,272 + $3,456 + $3,032 + $168) – $16,000 = $6,024 Because the NPV is positive, the recommendation would be to approve the project. To find the IRR, let us begin with the 14 percent discount rate, which produced a positive NPV. Incrementing at 4 percent with each step, we reach a negative NPV with a 30 percent discount rate. If we back up to 28 percent to “fine tune” our estimate, the NPV is $322. Therefore, the IRR is about 29 percent. The computer can provide a more precise answer with much less computation.

F – 33 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Calculating NPV, IRR, Payback Period To determine the payback period, we add the after-tax cash flows at the bottom of the table in Example F.1 for each year until we get as close as possible to $16,000 without exceeding it. For 2009 and 2010, cash flows are $6,380 + $7,148 = $13,528. The payback method is based on the assumption that cash flows are evenly distributed throughout the year, so in 2011 only $2,472 must be received before the payback point is reached. As $2,472/$6,329 is 0.39, the payback period is 2.39 years. Discount RateNPV 14%$6,025 18%$4,092 22%$2,425 26%$ %–$ 199

F – 34 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Application F.6 Payback for Example Project SOLUTION $500 $500 + $650 $1,150 $(1,550 – $1,150)/$ year 2.44 years Payback for Year 1= Payback for Years 1 and 2= = Proportion of Year 3= = Payback periods for project=

F – 35 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Computer Support Computer support such as spreadsheets and the Financial Analysis Solver (OM Explorer) allows for efficient financial analysis The analyst can focus on data collection and evaluation, including “what if” analyses

F – 36 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Managing by the Numbers The danger is in a preference for short- term results This can be the result of the precision and detachment that come from using the NPV, IRR, or Payback methods and from the reality that projects with the greatest strategic impact may have qualitative benefits that are difficult to quantify Financial analysis should augment, not replace, the insight and judgment that comes from experience

F – 37 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Managing by the Numbers Figure F.1 – OM Explorer Output for Salad Bar

F – 38 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.