Low Resistance Strip Sensors – RD50 Common Project – RD50/2011-05 CNM (Barcelona), SCIPP (Santa Cruz), IFIC (Valencia) Contact person: Miguel Ullán.

Slides:



Advertisements
Similar presentations
Silicon Technical Specifications Review General Properties Geometrical Specifications Technology Specifications –Mask –Test Structures –Mechanical –Electrical.
Advertisements

HPK L1 teststructures HPK L1 half moon teststructure corresponding to main chips 6,7 Results on  Diode C-V  Coupling capacitors  polysilicon arrays.
Metal Oxide Semiconductor Field Effect Transistors
Belle-II Meeting Nov Nov Thomas Bergauer (HEPHY Vienna) Status of DSSD Sensors.
A. Chilingarov, A. Weidberg, Bart Hommels PTP location studies – AUW 20/04/2010, DESY Punch-through location in ATLAS SCT sensors A.Chilingarov, Lancaster.
Slim Edges from Cleaving and ALD Sidewall Passivation Vitaliy Fadeyev, Hartmut F.-W. Sadrozinski, John Wright Santa Cruz Institute for Particle Physics,

Alternative technologies for Low Resistance Strip Sensors (LowR) at CNM CNM (Barcelona), SCIPP (Santa Cruz), IFIC (Valencia) M. Ullán, V. Benítez, J. Montserrat,
128 September, 2005 Silicon Sensor for the CMS Tracker The Silicon Sensors for the Inner Tracker of CMS CMS Tracker and it‘s Silicon Strip Sensors Radiation.
Sensors for CDF RunIIb silicon upgrade LayerR min (cm)1 MeV eq-n cm * * * * * *10.
20th RD50 Workshop (Bari)1 G. PellegriniInstituto de Microelectrónica de Barcelona G. Pellegrini, C. Fleta, M. Lozano, D. Quirion, Ivan Vila, F. Muñoz.
Embedded Pitch Adapters a high-yield interconnection solution for strip sensors M. Ullán, C. Fleta, X. Fernández-Tejero, V. Benítez CNM (Barcelona)
St Malo, 13 th April 2002Václav Vrba, Institute of Physics, AS CR 1 Václav Vrba Institute of Physics, AS CR, Prague Silicon pad sensors for W-Si ECal.
Charge collection studies on heavily diodes from RD50 multiplication run G. Kramberger, V. Cindro, I. Mandić, M. Mikuž Ϯ, M. Milovanović, M. Zavrtanik.
Haga clic para modificar el estilo de texto del patrón Progress on p-type isolation technology M. Lozano, F. Campabadal, C. Fleta, S. Martí *, M. Miñano.
RC chip Junji Tojo RIKEN VTX Meeting February 9 th, 2005.
8/22/01Marina Artuso - Pixel Sensor Meeting - Aug Sensor R&D at Syracuse University Marina Artuso Chaouki Boulahouache Brian Gantz Paul Gelling.
ALBA Synchrotron – 17 June 2010 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona First Measurements on 3D Strips Detectors.
Medipix sensors included in MP wafers 2 To achieve good spatial resolution through efficient charge collection: Produced by Micron Semiconductor on n-in-p.
Silicon Microstrip detector Single sided and double sided K.Kameswara rao, Tariq Aziz, Chendvankar, M.R.Patil Tata institute of fundamental research, Mumbai,
PHOBOS Silicon Sensors Production W.T. Lin Dept. of Physics, National Central University Chung-Li, Taiwan Introduction Design and Production of Si-Sensors.
Y. Unno for the ATLAS12 sensor community and Hamamatsu Photonics K.K.
Development of n-in-p planar pixel sensors with active edge for the ATLAS High-Luminosity Upgrade L. Bosisio* Università degli Studi di Trieste & INFN.
Status of the Low-Resistance (LowR) Strip Sensors Project CNM (Barcelona), SCIPP (Santa Cruz), IFIC (Valencia) Contact person: Miguel Ullán.
1 G. Pellegrini The 9th LC-Spain meeting 8th "Trento" Workshop on Advanced Silicon Radiation Detectors 3D Double-Sided sensors for the CMS phase-2 vertex.
RD50 participation in HV-CMOS submissions G. Casse University of Liverpool V. Fadeyev Santa Cruz Institute for Particle Physics Santa Cruz, USA HV-CMOS.
SILICON DETECTORS PART I Characteristics on semiconductors.
M. Lozano, C. Fleta*, G. Pellegrini, M. Ullán, F. Campabadal, J. M. Rafí CNM-IMB (CSIC), Barcelona, Spain (*) Currently at University of Glasgow, UK S.
Evaluation of the Low Resistance Strip Sensors (Low-R) Fabricated at CNM CNM (Barcelona), SCIPP (Santa Cruz), IFIC (Valencia) Contact person: Miguel Ullán.
Silicon detector processing and technology: Part II
16 sept G.-F. Dalla BettaSCIPP Maurizio Boscardin a, Claudio Piemonte a, Alberto Pozza a, Sabina Ronchin a, Nicola Zorzi a, Gian-Franco Dalla Betta.
Heavy ion irradiation on silicon strip sensors for GLAST & Radiation hardening of silicon strip sensors S.Yoshida, K.Yamanaka, T.Ohsugi, H.Masuda T.Mizuno,
8 July 1999A. Peisert, N. Zamiatin1 Silicon Detectors Status Anna Peisert, Cern Nikolai Zamiatin, JINR Plan Design R&D results Specifications Status of.
US ATLAS Upgrade Strip Meeting, Hartmut F.-W. Sadrozinski, SCIPP 1 Upgrade Silicon Strip Detectors (SSD) Hartmut F.-W. Sadrozinski SCIPP, UC Santa Cruz.
Status of Hamamatsu Silicon Sensors K. Hara (Univ of Tsukuba) Delivery leakage current at 150V & 350V number of defect channels wafer thickness & full.
Spencer/Ghausi, Introduction to Electronic Circuit Design, 1e, ©2003, Pearson Education, Inc. Chapter 3, slide 1 Introduction to Electronic Circuit Design.
CERN, November 2005 Claudio Piemonte RD50 workshop Claudio Piemonte a, Maurizio Boscardin a, Alberto Pozza a, Sabina Ronchin a, Nicola Zorzi a, Gian-Franco.
Haga clic para modificar el estilo de texto del patrón Infrared transparent detectors Manuel Lozano G. Pellegrini, E. Cabruja, D. Bassignana, CNM (CSIC)
25th RD50 Workshop (Bucharest) June 13th, Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona IMB-CNM, Barcelona (Spain)
1 Device Simulations & Hardware Developments for CBM STS Sudeep Chatterji CBM Group GSI Helmholtz Centre for Heavy Ion Research CBM Collaboration Meeting,
1 Nicolo Cartiglia, INFN, Torino - RD50 - Santander, 2015 Timing performance of LGAD-UFSD 1.New results from the last CNM LGAD runs 2.A proposal for LGAD.
RD50 funding request Fabrication and testing of new AC coupled 3D stripixel detectors G. Pellegrini - CNM Barcelona Z. Li – BNL C. Garcia – IFIC R. Bates.
1 J.M. Heuser − STS Development Microstrip detector GSI-CIS Johann M. Heuser, GSI Li Long, CIS CBM Collaboration Meeting, GSI, Update on.
1/14 Characterization of P-type Silicon Detectors Irradiated with Neutrons M.Miñano 1, J.P.Balbuena 2, C. García 1, S.González 1, C.Lacasta 1, V.Lacuesta.
IFR Praha 2004, 16 th April 2004Václav Vrba, Institute of Physics, AS CR 1 Václav Vrba Institute of Physics, AS CR, Prague Silicon sensors status.
9 th “Trento” Workshop on Advanced Silicon Radiation Detectors Genova, February 26-28, 2014 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica.
Punch-through protection in ATLAS SCT sensors A.Chilingarov, Lancaster University, UK Meeting on Investigations into the effect of beam splash on SCT Modules.
Punch through protection and p-stop ion concentration in HPK strip mini-sensors Jan Bohm, Institute of Physics ASCR, Prague Peter Kodys, Pavel Novotny,
Giulio Pellegrini 27th RD50 Workshop (CERN) 2-4 December 2015 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona 1 Status of.
Simulation of new P-Type strip detectors 17th RD50 Workshop, CERN, Geneva 1/15 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona.
1 Updates on Punch-through Protection H. F.–W. Sadrozinski with C. Betancourt, A. Bielecki, Z. Butko, A. Deran, V. Fadeyev, S. Lindgren, C. Parker, N.
Claudio Piemonte Firenze, oct RESMDD 04 Simulation, design, and manufacturing tests of single-type column 3D silicon detectors Claudio Piemonte.
P. Fernández-Martínez – Optimized LGAD PeripheryRESMDD14, Firenze 8-10 October Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de.
How to design a good sensor? General sensor desing rules Avoid high electric fields Provide good interstrip isolation (high Rint) Avoid signal coupling.
IH2655 Seminar January 26, 2016 Electrical Characterization,B. Gunnar Malm
A novel two-dimensional microstrip sensor for charge division readout D. Bassignana, M. Lozano, G. Pellegrini CNM-IMB (CSIC) M. Fernández, R. Jaramillo,
Comparison of the AC and DC coupled pixels sensors read out with FE-I4 electronics Gianluigi Casse*, Marko Milovanovic, Paul Dervan, Ilya Tsurin 22/06/20161.
G. PellegriniInstituto de Microelectrónica de Barcelona Status of LGAD RD50 projects at CNM28th RD50 Workshop (Torino) 1 Status of LGAD RD50 projects at.
AC―coupled pitch adapters for silicon strip detectors J. Härkönen 1), E. Tuovinen 1), P. Luukka 1), T. Mäenpää 1), E. Tuovinen 1), E. Tuominen 1), Y. Gotra.
First production of Ultra-Fast Silicon Detectors at FBK
Irradiation and annealing study of 3D p-type strip detectors
Highlights of Atlas Upgrade Week, March 2011
Design and fabrication of Endcap prototype sensors (petalet)
VLSI System Design LEC3.1 CMOS FABRICATION REVIEW
Silicon Wafer cm (5’’- 8’’) mm
Optional Reading: Pierret 4; Hu 3
Vladimir Cindro, RD50 Workshop, Prague, June 26-28, 2006
On this basis, a new geometry with silicon short strip sensors (strixels) is proposed. In order to understand the behaviour of such devices, test geometries.
3D sensors: status and plans for the ACTIVE project
Fabrication of 3D detectors with columnar electrodes of the same doping type Sabina Ronchina, Maurizio Boscardina, Claudio Piemontea, Alberto Pozzaa, Nicola.
Presentation transcript:

Low Resistance Strip Sensors – RD50 Common Project – RD50/ CNM (Barcelona), SCIPP (Santa Cruz), IFIC (Valencia) Contact person: Miguel Ullán

Miguel Ullán (CNM-Barcelona) RD50 meeting (CERN) – Nov Outline  Motivation  Technological challenges  Preliminary experiments  Designs  Status and plan  Summary

Miguel Ullán (CNM-Barcelona) RD50 meeting (CERN) – Nov Motivation  In the scenario of a beam loss, a large charge deposition in the sensor bulk can lead to a local field collapse.  A conducting path to backplane is created and implant strip potential could reach a significant voltage.  Coupling capacitors can get damaged by the voltage difference between the implant and the readout strip They are typically qualified to 100 V  Punch-Through Protection (PTP) structures  used at strip end to develop low impedance to the bias line  Reduce distance from implant to bias ring  Placement of the resistor between the implant and bias rail (“transistor effect”). Micron HPK

Miguel Ullán (CNM-Barcelona) RD50 meeting (CERN) – Nov PTP effectiveness at ‘far’ end  Measurements with a large charge injected by a laser pulse showed that the strips can still be damaged  The voltages on the opposite end of the strip keep rising well above the 100V objective  The large value of the implant resistance effectively isolates the “far” end of the strip from the PT structure leading to the large voltages 4 Near end, plateau for PT structures Opposite end, no plateau. C. Betancourt, et al. “Updates on Punch- through Protection” ATLAS Upgrade week, Oxford, March 31, 2011.

Miguel Ullán (CNM-Barcelona) RD50 meeting (CERN) – Nov Proposed solution  To reduce the resistance of the strips on the silicon sensor.  A desired target value is 1.5 kOhm/cm (~ 1 order of magnitude reduction)  Not possible to increase implant doping to significantly lower the resistance. Solid solubility limit of the dopant in silicon + practical technological limits (~ 1 x cm -3 )  Alternative: deposition of Aluminum on top of the implant:  R □ (Al) ~ 0.04  /□  20  /cm Cross section Longitudinal section Top view

Miguel Ullán (CNM-Barcelona) RD50 meeting (CERN) – Nov Technological challenges  Metal layer deposition before the coupling capacitance is defined  2 metals processing  A layer of high-quality oxide/nitride with metal strips on top to implement the AC-coupled sensor readout (MIM cap).  Deposited (not grown)  Low temperature processing  PTP structure  Not tried before at CNM  Very dependent on surface effects (difficult to simulate)

Miguel Ullán (CNM-Barcelona) RD50 meeting (CERN) – Nov Metal on strip  Metal layer deposition on top of the implant before the coupling capacitance is defined.  MIM capacitors  Low temperature deposited isolation –PECVD ( ºC) –Risk of pinholes (Yield, Breakdown) –> 50 pF  ~ 3000 Å  Alternatives (for high T deposition) –Polysilicon + TaSi (tantalum silicide) –Tungsten  Experiments already performed at CNM on smaller dimensions. More experiments needed.

Miguel Ullán (CNM-Barcelona) RD50 meeting (CERN) – Nov Preliminary experiments  6 wafers batch of MIM capacitors  Different sizes –C1: 1100 x 1100  m 2 = 1.20 mm 2 –C2: 600 x 600  m 2 = 0.36 mm 2 –C3: 300 x 300  m 2 = 0.09 mm 2 –… (short strips ~ 0.5 mm 2 )  Low-temperature deposited isolation  PECVD ( ºC)  Use of a multi-layer to avoid pinholes  3 technological options:  Op1: 3000 Å of SiH 4 -based silicon oxide (SiO 2 ) deposited in 2 steps  Op2: 3000 Å of TEOS-based oxide deposited in 2 steps (Tetra-Etil Orto-Silicate)  Op3: 1200 Å Å Å of TEOS-based ox. + Si 3 N 4 + SiH 4 -based ox.

Miguel Ullán (CNM-Barcelona) RD50 meeting (CERN) – Nov MIM results  All 3 options give good MIM capacitors  Yield is high even for the largest caps (> 1 mm 2 ) (Not yet large statistics from all the wafers)  I-V meas: I LEAK < 3 20 V for the largest cap (C1)  Capacitance:  C(op1) = 122 pF/mm 2  C(op2) = 120 pF/mm 2  C(op3) = 110 pF/mm 2  Breakdown:  VBD(op1)| C1 = 170 V  VBD(op2)| C1 = 150 V (low statistics)  VBD(op3)| C1 = 210 V (low statistics)

Miguel Ullán (CNM-Barcelona) RD50 meeting (CERN) – Nov PTP design  Reduce implant distance to bias ring to favor punch-through effect at low voltages  Placement of the resistor between the implant and bias rail (“transistor effect”).  Compromise between PT effect and breakdown  Design of experiments varying d, p, n (2 indep. variables)  Simulations ? d s p Bias rail Polysilicon “bridge/gate” Implant

Miguel Ullán (CNM-Barcelona) RD50 meeting (CERN) – Nov Test structures  Test structure to measure voltage in the implant under laser injection at different strip distances  Laser tests (SCIPP-Santa Cruz)

Miguel Ullán (CNM-Barcelona) RD50 meeting (CERN) – Nov Wafer mask design  DOE for the PT structure  Control structures with standard resistive implant structure  Test structures  Extra structures for “slim edges”

Miguel Ullán (CNM-Barcelona) RD50 meeting (CERN) – Nov Status and Plan  Final measurements (more statistics) on MIM experiement wafers  DOE being planned and test structures designed  Final technological options being defined  Finish designs by end of January 2012  Fabrication (4-5 months): June 2012  Device electrical characterization, PTP validation, laser tests, Irradiation, re-characterization, post-irrad laser tests…

Miguel Ullán (CNM-Barcelona) RD50 meeting (CERN) – Nov Summary  RD50 Common Project: Low Resistance Strip Sensors (June 2011)  CNM-Barcelona, SCIPP-Santa Cruz, IFIC-Valencia  Reduced resistivity of the strip:  Proposed metal layer on top of the strip implant  MiM coupling capacitor  PTP structures implemented  Preliminary experiments on MIM coupling capacitors:  Good results (yield, large area, I LEAK, C, V BD ). More statistics needed  Options to be chosen  DOE on PT structures implemented  Final designs, start fabrication ~January 2012  Samples ~June 2012  This could be a very innovative solution for new generations of long-strip detectors and with great applications in future HEP experiments. 14