Sigurd Skogestad Department of Chemical Engineering

Slides:



Advertisements
Similar presentations
1 Outline Control structure design (plantwide control) A procedure for control structure design I Top Down Step 1: Degrees of freedom Step 2: Operational.
Advertisements

1 CONTROLLED VARIABLE AND MEASUREMENT SELECTION Sigurd Skogestad Department of Chemical Engineering Norwegian University of Science and Technology (NTNU)
1 Outline Control structure design (plantwide control) A procedure for control structure design I Top Down Step 1: Degrees of freedom Step 2: Operational.
1 Effective Implementation of optimal operation using Self- optimizing control Sigurd Skogestad Institutt for kjemisk prosessteknologi NTNU, Trondheim.
Plantwide process control with focus on selecting economic controlled variables («self- optimizing control») Sigurd Skogestad, NTNU 2014.
Practical plantwide process control Sigurd Skogestad, NTNU Thailand, April 2014.
1 Feedback: The simple and best solution. Applications to self-optimizing control and stabilization of new operating regimes Sigurd Skogestad Department.
GHGT-8 Self-Optimizing and Control Structure Design for a CO 2 Capturing Plant Mehdi Panahi, Mehdi Karimi, Sigurd Skogestad, Magne Hillestad, Hallvard.
1 Coordinator MPC for maximization of plant throughput Elvira Marie B. Aske* &, Stig Strand & and Sigurd Skogestad* * Department of Chemical Engineering,
First African Control Conference, Cape Town, 04 December 2003
1 Outline Skogestad procedure for control structure design I Top Down Step S1: Define operational objective (cost) and constraints Step S2: Identify degrees.
1 Plantwide control: Towards a systematic procedure Sigurd Skogestad Department of Chemical Engineering Norwegian University of Science and Tecnology (NTNU)
1 Feedback control theory: An overview and connections to biochemical systems theory Sigurd Skogestad Department of Chemical Engineering Norwegian University.
1 1 Economic Plantwide Control, July 2015 ECONOMIC PLANTWIDE CONTROL Sigurd Skogestad Dept. of Chemical Engineering, Norwegian University of Science and.
Outline Skogestad procedure for control structure design I Top Down
1 Outline Control structure design (plantwide control) A procedure for control structure design I Top Down Step 1: Degrees of freedom Step 2: Operational.
1 1 V. Minasidis et. al. | Simple Rules for Economic Plantwide ControlSimple Rules for Economic Plantwide Control, PSE & ESCAPE 2015 SIMPLE RULES FOR ECONOMIC.
1 Structure of the process control system Benefits from MPC (Model Predictive Control) and RTO (Real Time Optimization) Sigurd Skogestad Department of.
1 Outline Skogestad procedure for control structure design I Top Down Step S1: Define operational objective (cost) and constraints Step S2: Identify degrees.
1 A SYSTEMATIC APPROACH TO PLANTWIDE CONTROL Sigurd Skogestad Department of Chemical Engineering Norwegian University of Science and Tecnology (NTNU) Trondheim,
1 AN INTRODUCTION TO PLANTWIDE CONTROL Sigurd Skogestad Department of Chemical Engineering Norwegian University of Science and Tecnology (NTNU) Trondheim,
1 A SYSTEMATIC APPROACH TO PLANTWIDE CONTROL Sigurd Skogestad Department of Chemical Engineering Norwegian University of Science and Tecnology (NTNU) Trondheim,
1 A Plantwide Control Procedure Applied to the HDA Process Antonio Araújo and Sigurd Skogestad Department of Chemical Engineering Norwegian University.
1 Practical plantwide process control. Extra Sigurd Skogestad, NTNU Thailand, April 2014.
1 E. S. Hori, Maximum Gain Rule Maximum Gain Rule for Selecting Controlled Variables Eduardo Shigueo Hori, Sigurd Skogestad Norwegian University of Science.
1 PLANTWIDE CONTROL Sigurd Skogestad Department of Chemical Engineering Norwegian University of Science and Tecnology (NTNU) Trondheim, Norway.
1 PLANTWIDE CONTROL Sigurd Skogestad Department of Chemical Engineering Norwegian University of Science and Tecnology (NTNU) Trondheim, Norway 01 April.
1 Feedback: The simple and best solution. Applications to self-optimizing control and stabilization of new operating regimes Sigurd Skogestad Department.
1 Active constraint regions for economically optimal operation of distillation columns Sigurd Skogestad and Magnus G. Jacobsen Department of Chemical Engineering.
1 A SYSTEMATIC APPROACH TO PLANTWIDE CONTROL Sigurd Skogestad Department of Chemical Engineering Norwegian University of Science and Tecnology (NTNU) Trondheim,
1 Plantwide control: Towards a systematic procedure Sigurd Skogestad Department of Chemical Engineering Norwegian University of Science and Tecnology (NTNU)
1 Outline Control structure design (plantwide control) A procedure for control structure design I Top Down Step 1: Degrees of freedom Step 2: Operational.
1 Selv-optimaliserende regulering Anvendelser mot prosessindustrien, biologi og maratonløping Sigurd Skogestad Institutt for kjemisk prosessteknologi,
1 Self-optimizing control From key performance indicators to control of biological systems Sigurd Skogestad Department of Chemical Engineering Norwegian.
1 ECONOMIC PLANTWIDE CONTROL: Control structure design for complete processing plants Sigurd Skogestad Department of Chemical Engineering Norwegian University.
1 PLANTWIDE CONTROL Identifying and switching between active constraints regions Sigurd Skogestad and Magnus G. Jacobsen Department of Chemical Engineering.
1 Feedback: The simple and best solution. Applications to self-optimizing control and stabilization of new operating regimes Sigurd Skogestad Department.
1 A SYSTEMATIC APPROACH TO PLANTWIDE CONTROL Sigurd Skogestad Department of Chemical Engineering Norwegian University of Science and Tecnology (NTNU) Trondheim,
1 II. Bottom-up Determine secondary controlled variables and structure (configuration) of control system (pairing) A good control configuration is insensitive.
1 Self-optimizing control: Simple implementation of optimal operation Sigurd Skogestad Department of Chemical Engineering Norwegian University of Science.
1 Feedback: The simple and best solution. Applications to self-optimizing control and stabilization of new operating regimes Sigurd Skogestad Department.
1 Feedback Applications to self-optimizing control and stabilization of new operating regimes Sigurd Skogestad Department of Chemical Engineering Norwegian.
1 A SYSTEMATIC APPROACH TO PLANTWIDE CONTROL ( ) Sigurd Skogestad Department of Chemical Engineering Norwegian University of Science and Tecnology.
Control Structure Design: New Developments and Future Directions Vinay Kariwala and Sigurd Skogestad Department of Chemical Engineering NTNU, Trondheim,
1 Outline About Trondheim and myself Control structure design (plantwide control) A procedure for control structure design I Top Down Step 1: Degrees of.
1 Self-optimizing control From key performance indicators to control of biological systems Sigurd Skogestad Department of Chemical Engineering Norwegian.
1 Combination of Measurements as Controlled Variables for Self-optimizing Control Vidar Alstad † and Sigurd Skogestad Department of Chemical Engineering,
1 PLANTWIDE CONTROL Sigurd Skogestad Department of Chemical Engineering Norwegian University of Science and Tecnology (NTNU) Trondheim, Norway August/September.
1 Control structure design for complete chemical plants (a systematic procedure to plantwide control) Sigurd Skogestad Department of Chemical Engineering.
1 A SYSTEMATIC APPROACH TO PLANTWIDE CONTROL ( ) Sigurd Skogestad Department of Chemical Engineering Norwegian University of Science and Tecnology.
Control strategies for optimal operation of complete plants Plantwide control - With focus on selecting economic controlled variables Sigurd Skogestad,
A systematic procedure for economic plantwide control
Advanced process control with focus on selecting economic controlled variables («self-optimizing control») Sigurd Skogestad, NTNU 2016.
Sigurd Skogestad Department of Chemical Engineering
Outline Control structure design (plantwide control)
Sigurd Skogestad Department of Chemical Engineering
Sigurd Skogestad Institutt for kjemisk prosessteknologi
Example regulatory control: Distillation
PLANTWIDE CONTROL Sigurd Skogestad Department of Chemical Engineering
Plantwide control: Towards a systematic procedure
PLANTWIDE CONTROL Sigurd Skogestad Department of Chemical Engineering
CONTROLLED VARIABLE AND MEASUREMENT SELECTION
Outline Control structure design (plantwide control)
Sigurd Skogestad Department of Chemical Engineering
Plantwide control: Towards a systematic procedure
Vidar Alstad† and Sigurd Skogestad Department of Chemical Engineering,
Plantwide control: Towards a systematic procedure
Example regulatory control: Distillation
Outline Control structure design (plantwide control)
Presentation transcript:

Plantwide control (Control structure design for complete chemical plants) Sigurd Skogestad Department of Chemical Engineering Norwegian University of Science and Tecnology (NTNU) Trondheim, Norway Based on: Plenary presentation at ESCAPE’12, May 2002 Updated/expanded April 2004 for 2.5 h tutorial in Vancouver, Canada Further updated: August 2004, December 2004, August 2005

Outline Control structure design (plantwide control) A procedure for control structure design I Top Down Step 1: Degrees of freedom Step 2: Operational objectives (optimal operation) Step 3: What to control ? (primary CV’s) (self-optimizing control) Step 4: Where set production rate? II Bottom Up Step 5: Regulatory control: What more to control (secondary CV’s) ? Step 6: Supervisory control Step 7: Real-time optimization

Idealized view of control (“Ph.D. control”)

Practice: Tennessee Eastman challenge problem (Downs, 1991) (“PID control”)

How we design a control system for a complete chemical plant? Where do we start? What should we control? and why? etc.

Idealized view II: Optimizing control

Practice II: Hierarchical decomposition with separate layers What should we control?

Alan Foss (“Critique of chemical process control theory”, AIChE Journal,1973): The central issue to be resolved ... is the determination of control system structure. Which variables should be measured, which inputs should be manipulated and which links should be made between the two sets? There is more than a suspicion that the work of a genius is needed here, for without it the control configuration problem will likely remain in a primitive, hazily stated and wholly unmanageable form. The gap is present indeed, but contrary to the views of many, it is the theoretician who must close it. Carl Nett (1989): Minimize control system complexity subject to the achievement of accuracy specifications in the face of uncertainty.

Control structure design Not the tuning and behavior of each control loop, But rather the control philosophy of the overall plant with emphasis on the structural decisions: Selection of controlled variables (“outputs”) Selection of manipulated variables (“inputs”) Selection of (extra) measurements Selection of control configuration (structure of overall controller that interconnects the controlled, manipulated and measured variables) Selection of controller type (LQG, H-infinity, PID, decoupler, MPC etc.). That is: Control structure design includes all the decisions we need make to get from ``PID control’’ to “Ph.D” control

Each plant usually different – modeling expensive Process control: “Plantwide control” = “Control structure design for complete chemical plant” Large systems Each plant usually different – modeling expensive Slow processes – no problem with computation time Structural issues important What to control? Extra measurements Pairing of loops

Previous work on plantwide control Page Buckley (1964) - Chapter on “Overall process control” (still industrial practice) Greg Shinskey (1967) – process control systems Alan Foss (1973) - control system structure Bill Luyben et al. (1975- ) – case studies ; “snowball effect” George Stephanopoulos and Manfred Morari (1980) – synthesis of control structures for chemical processes Ruel Shinnar (1981- ) - “dominant variables” Jim Downs (1991) - Tennessee Eastman challenge problem Larsson and Skogestad (2000): Review of plantwide control

Control structure selection issues are identified as important also in other industries. Professor Gary Balas (Minnesota) at ECC’03 about flight control at Boeing: The most important control issue has always been to select the right controlled variables --- no systematic tools used!

Main simplification: Hierarchical structure RTO Need to define objectives and identify main issues for each layer MPC PID

Regulatory control (seconds) Purpose: “Stabilize” the plant by controlling selected ‘’secondary’’ variables (y2) such that the plant does not drift too far away from its desired operation Use simple single-loop PI(D) controllers Status: Many loops poorly tuned Most common setting: Kc=1, I=1 min (default) Even wrong sign of gain Kc ….

Regulatory control……... Trend: Can do better! Carefully go through plant and retune important loops using standardized tuning procedure Exists many tuning rules, including Skogestad (SIMC) rules: Kc = (1/k) (1/ [c +]) I = min (1, 4[c + ]), Typical: c= “Probably the best simple PID tuning rules in the world” © Carlsberg Outstanding structural issue: What loops to close, that is, which variables (y2) to control?

Supervisory control (minutes) Purpose: Keep primary controlled variables (c=y1) at desired values, using as degrees of freedom the setpoints y2s for the regulatory layer. Status: Many different “advanced” controllers, including feedforward, decouplers, overrides, cascades, selectors, Smith Predictors, etc. Issues: Which variables to control may change due to change of “active constraints” Interactions and “pairing”

Supervisory control…... Trend: Model predictive control (MPC) used as unifying tool. Linear multivariable models with input constraints Tuning (modelling) is time-consuming and expensive Issue: When use MPC and when use simpler single-loop decentralized controllers ? MPC is preferred if active constraints (“bottleneck”) change. Avoids logic for reconfiguration of loops Outstanding structural issue: What primary variables c=y1 to control?

Local optimization (hour) Purpose: Minimize cost function J and: Identify active constraints Recompute optimal setpoints y1s for the controlled variables Status: Done manually by clever operators and engineers Trend: Real-time optimization (RTO) based on detailed nonlinear steady-state model Issues: Optimization not reliable. Need nonlinear steady-state model Modelling is time-consuming and expensive

Objectives of layers: MV’s and CV’s RTO Min J; MV=y1s cs = y1s CV=y1; MV=y2s MPC y2s PID CV=y2; MV=u u (valves)

Stepwise procedure plantwide control I. TOP-DOWN Step 1. DEGREES OF FREEDOM Step 2. OPERATIONAL OBJECTIVES Step 3. WHAT TO CONTROL? (primary CV’s c=y1) Step 4. PRODUCTION RATE II. BOTTOM-UP (structure control system): Step 5. REGULATORY CONTROL LAYER (PID) “Stabilization” What more to control? (secondary CV’s y2) Step 6. SUPERVISORY CONTROL LAYER (MPC) Decentralization Step 7. OPTIMIZATION LAYER (RTO) Can we do without it?

Step 1. Degrees of freedom (DOFs) m – dynamic (control) degrees of freedom = valves u0 – steady-state degrees of freedom Cost J depends normally only on steady-state DOFs

Distillation column with given feed Control degrees of freeom Nm = 5 Steady-state degrees of freedom, Nu0 = 3 (2 with given pressure)

Step 2. Define optimal operation (economics) What are we going to use our degrees of freedom for? Define scalar cost function J(u0,x,d) u0: degrees of freedom d: disturbances x: states (internal variables) Typical cost function: Optimal operation for given d: minu0 J(u0,x,d) subject to: Model equations: f(u0,x,d) = 0 Operational constraints: g(u0,x,d) < 0 J = cost feed + cost energy – value products

Step 3. What should we control (c)? Implementation of optimal operation

What c’s should we control? Optimal solution is usually at constraints, that is, most of the degrees of freedom are used to satisfy “active constraints”, g(u0,d) = 0 CONTROL ACTIVE CONSTRAINTS! cs = value of active constraint Implementation of active constraints is usually simple. WHAT MORE SHOULD WE CONTROL? Find variables c for remaining unconstrained degrees of freedom u.

Self-optimizing Control Self-optimizing control is when acceptable operation can be achieved using constant set points (cs) for the controlled variables c (without the need to re-optimizing when disturbances occur). c=cs

Self-optimizing Control – Marathon Optimal operation of Marathon runner, J=T Any self-optimizing variable c (to control at constant setpoint)?

Self-optimizing Control – Marathon Optimal operation of Marathon runner, J=T Any self-optimizing variable c (to control at constant setpoint)? c1 = distance to leader of race c2 = speed c3 = heart rate c4 = level of lactate in muscles

Self-optimizing Control – Marathon Optimal operation of Marathon runner, J=T Any self-optimizing variable c (to control at constant setpoint)? c1 = distance to leader of race (Problem: Feasibility for d) c2 = speed (Problem: Feasibility for d) c3 = heart rate (Problem: Impl. Error n) c4 = level of lactate in muscles (Problem: Large impl.error n)

Self-optimizing Control – Sprinter Optimal operation of Sprinter (100 m), J=T Active constraint control: Maximum speed (”no thinking required”)

What should we control? Rule: Maximize the scaled gain Scalar case. Minimum singular value = gain |G| Maximize scaled gain: |Gs| = |G| / span |G|: gain from independent variable (u) to candidate controlled variable (c) span (of c) = optimal variation in c + control error for c

Step 4. Where set production rate? Very important! Determines structure of remaining inventory (level) control system Set production rate at (dynamic) bottleneck Link between Top-down and Bottom-up parts

Production rate set at inlet : Inventory control in direction of flow

Production rate set at outlet: Inventory control opposite flow

Production rate set inside process

Where to set the production rate? Very important decision that determines the structure of the rest of the control system! May also have important economic implications

II. Bottom-up Determine secondary controlled variables and structure (configuration) of control system (pairing) A good control configuration is insensitive to parameter changes Step 5. REGULATORY CONTROL LAYER 5.1 Stabilization (including level control) 5.2 Local disturbance rejection (inner cascades) What more to control? (secondary variables) Step 6. SUPERVISORY CONTROL LAYER Decentralized or multivariable control (MPC)? Pairing? Step 7. OPTIMIZATION LAYER (RTO)

Step 5. Regulatory control layer Purpose: “Stabilize” the plant using local SISO PID controllers Enable manual operation (by operators) Main structural issues: What more should we control? (secondary cv’s, y2) Pairing with manipulated variables (mv’s u2) y1 = c y2 = ?

ys y XC Ts T TC Ls L FC z XC

Degrees of freedom unchanged No degrees of freedom lost by control of secondary (local) variables as setpoints become y2s replace inputs u2 as new degrees of freedom Cascade control: G K y2s u2 y2 y1 Original DOF New DOF

What should we control? Rule: Maximize the scaled gain Scalar case. Minimum singular value = gain |G| Maximize scaled gain: |Gs| = |G| / span |G|: gain from independent variable (u) to candidate controlled variable (y) span (of y) = optimal variation in c + control error for y

Step 6. Supervisory control layer Purpose: Keep primary controlled outputs c=y1 at optimal setpoints cs Degrees of freedom: Setpoints y2s in reg.control layer Main structural issue: Decentralized or multivariable?

Decentralized control (single-loop controllers) Use for: Noninteracting process and no change in active constraints + Tuning may be done on-line + No or minimal model requirements + Easy to fix and change - Need to determine pairing - Performance loss compared to multivariable control - Complicated logic required for reconfiguration when active constraints move

Multivariable control (with explicit constraint handling = MPC) Use for: Interacting process and changes in active constraints + Easy handling of feedforward control + Easy handling of changing constraints no need for logic smooth transition - Requires multivariable dynamic model - Tuning may be difficult - Less transparent - “Everything goes down at the same time”

Step 7. Optimization layer (RTO) Purpose: Identify active constraints and compute optimal setpoints (to be implemented by supervisory control layer) Main structural issue: Do we need RTO? (or is process self-optimizing)

Conclusion Procedure plantwide control: I. Top-down analysis to identify degrees of freedom and primary controlled variables (look for self-optimizing variables) II. Bottom-up analysis to determine secondary controlled variables and structure of control system (pairing).

Summary: Main steps What should we control (y1=c=z)? Must define optimal operation! Where should we set the production rate? At bottleneck What more should we control (y2)? Variables that “stabilize” the plant Control of primary variables Decentralized? Multivariable (MPC)?