G070517-00-0Charging Workshop - MIT - July071 T.J. Sumner – ICL lead and LIST Henrique Araujo, Markus Schulte, Diana Shaul, Christian Trenkle (now Astrium),

Slides:



Advertisements
Similar presentations
Happyphysics.com Physics Lecture Resources Prof. Mineesh Gulati Head-Physics Wing Happy Model Hr. Sec. School, Udhampur, J&K Website: happyphysics.com.
Advertisements

3.2 More about photo electricity The easiest electrons to eject are on the metals surface And will have maximum kinetic energy Other electrons need more.
LISA Charging Research in Perugia and Plans for Virgo Workshop on Charging Issues in Experimental Gravity Massachusetts Institute of Technology Cambridge.
A particle monitor for LISA Pathfinder and Gravity Probe-B gyroscope charging in LEO Peter Wass, Henrique Araújo, Tim Sumner Imperial College London, UK.
Results from the GIOVE-A CEDEX Space Radiation Monitor B Taylor 1, C Underwood 1, H Evans 2, E Daly 2, G Mandorlo 2, R Prieto 2, M Falcone 2 1. Surrey.
LIGO Science Collaboration Meeting Hanford, March 19-23, GRS LIGO_LSC_Sun_UVLED_ ppt, K. Sun LIGO Test Mass Charging Mitigation Using Modulated.
Impact of the Particle Environment on LYRA Data M. Dominique, A. BenMoussa, M.Kruglanski, L. Dolla, I. Dammasch, M. Kretzschmar PROBA2 workshop, May 04.
Phys 102 – Lecture 25 The quantum mechanical model of light.
TeVPA, July , SLAC 1 Cosmic rays at the knee and above with IceTop and IceCube Serap Tilav for The IceCube Collaboration South Pole 4 Feb 2009.
Space radiation dosimetry and the fluorescent nuclear track detector Nakahiro Yasuda National Institute of Radiological Sciences.
GLAST Simulations Theodore E. Hierath Louisiana State University August 20, 2001.
12 TH STANDARD PHYSICS Dual nature of radiation, Matter and Relativity.
LIGO-G Z D. Ugolini, Charging Workshop July UV Illumination Studies at Trinity University Dennis Ugolini, Mark Girard 2007 Workshop on.
Special Issues on Neutrino Telescopy Apostolos G. Tsirigotis Hellenic Open University School of Science & Technology Particle and Astroparticle Physics.
First eLISA Consortium Meeting - APC, Paris 22nd October 2012 Charge Management T J Sumner Charging Effects Charging Processes Charge Control Technology.
Stuart D. BaleFIELDS iCDR – Science Requirements Solar Probe Plus FIELDS Instrument CDR Science and Instrument Overview Science Requirements Stuart D.
Centre de Toulouse Radiation interaction with matter 1.
Space Environment and Satellite Systems Transient Plasma Analyzer for Hypervelocity Impact Studies Dr. David Lauben January 9, 2013.
References Hans Kuzmany : Solid State Spectroscopy (Springer) Chap 5 S.M. Sze: Physics of semiconductor devices (Wiley) Chap 13 PHOTODETECTORS Detection.
Sally Seidel 1 3D Sensor Studies at New Mexico Sally Seidel for Martin Hoeferkamp, Igor Gorelov, Elena Vataga, and Jessica Metcalfe University of New Mexico.
Inertial Sensor and Its Application for Space Fundamental Experiments Ze-Bing Zhou ( 周泽兵 ), Jun Luo ( 罗俊 ) Center for Gravitational.
G O D D A R D S P A C E F L I G H T C E N T E R Surface Potential Measurements with the LISA Kelvin Probe Jordan Camp LIGO/LISA Charging Workshop July.
Stuart D. BaleFIELDS iPDR – Science Requirements Solar Probe Plus FIELDS Instrument PDR Science and Instrument Overview Science Requirements Stuart D.
INTERNATIONAL STANDARDIZATION ORGANIZATION TECHNICAL SPECIFICATION Space Environment (Natural and Artificial) Probabilistic model of fluences and.
11 February 2000Genova (I)1 ESA Space Environment & Effects Analysis Section Space Radiation Environment P. Nieminen, ESA/ESTEC, The Netherlands  Overview.
Special Issues on Neutrino Telescopy Apostolos G. Tsirigotis Hellenic Open University School of Science & Technology Particle and Astroparticle Physics.
The PLANETOCOSMICS Geant4 application L. Desorgher Physikalisches Institut, University of Bern.
Hard X and Gamma-ray Polarization: the ultimate dimension (ESA Cosmic Vision ) or the Compton Scattering polarimetery challenges Ezio Caroli,
Susanna Guatelli & Barbara Mascialino G.A.P. Cirrone (INFN LNS), G. Cuttone (INFN LNS), S. Donadio (INFN,Genova), S. Guatelli (INFN Genova), M. Maire (LAPP),
PeTeR: a hardware simulator for LISA PF TM-GRS system 23/05/ th LISA Symposium May 2012, BnF Paris L. Marconi and R. Stanga Università degli.
How to use a radiation monitor to reduce LISA noise levels Diana Shaul 1, Henrique Araújo 1, Daniel Hollington 1, Alberto Lobo 2, Markus Schulte 1, Tim.
Final Presentation By Matthew Lewis 17 th March 2006 “To Determine the Accuracy that GOES True Numbers can Reproduce the Full X-ray Spectrum of the Sun”
1 PHY Lecture 5 Interaction of solar radiation and the atmosphere.
Electrostatic force noise and free-fall for LISA Bill Weber Università di Trento Ludovico Carbone, Antonella Cavalleri, Giacomo Ciani, Rita Dolesi, Mauro.
Techniques for Nuclear and Particle Physics Experiments By W.R. Leo Chapter Eight:
A. Vaivads, M. André, S. Buchert, N. Cornilleau-Wehrlin, A. Eriksson, A. Fazakerley, Y. Khotyaintsev, B. Lavraud, C. Mouikis, T. Phan, B. N. Rogers, J.-E.
J.Vaitkus IWORID6, Glasgow,
Chemistry XXI Unit 2 How do we determine structure? The central goal of this unit is to help you develop ways of thinking that can be used to predict the.
Daniel Matthiä(1)‏, Bernd Heber(2), Matthias Meier(1),
Lecture 3-Building a Detector (cont’d) George K. Parks Space Sciences Laboratory UC Berkeley, Berkeley, CA.
20 September 1999Geant4 Workshop1 in Space : Examples of Past and Future Missions and Experiments P. Nieminen, ESA/ESTEC, The Netherlands.
High-energy Electron Spectrum From PPB-BETS Experiment In Antarctica Kenji Yoshida 1, Shoji Torii 2 on behalf of the PPB-BETS collaboration 1 Shibaura.
Stuart D. BaleFIELDS SOC CDR – Science Requirements Solar Probe Plus FIELDS SOC CDR Science and Instrument Overview Science Requirements Stuart D. Bale.
Penn State, 20 th -24 th July TH INTERNATIONAL LISA S YMPOSIUM D. Bortoluzzi, M. Da Lio, S. Vitale1 LTP dynamics and control D. Bortoluzzi, M. Da.
X-IFU background Simone Lotti INAF-IAPS Roma.
Unit 12: Part 2 Quantum Physics. Overview Quantization: Planck’s Hypothesis Quanta of Light: Photons and the Photoelectric Effect Quantum “Particles”:
Development of a Single Ion Detector for Radiation Track Structure Studies F. Vasi, M. Casiraghi, R. Schulte, V. Bashkirov.
Dream Team Meeting1/25-26/10 Dream Team Meeting1/25-26/10.
An Optical Readout System for the LISA Gravitational Reference Sensor Fausto Acernese, Rosario De Rosa, Luciano Di Fiore, Fabio Garufi, Adele La Rana and.
Pedro Brogueira 1, Patrícia Gonçalves 2, Ana Keating 2, Dalmiro Maia 3, Mário Pimenta 2, Bernardo Tomé 2 1 IST, Instituto Superior Técnico, 2 LIP, Laboratório.
1 Cosmic Ray Physics with IceTop and IceCube Serap Tilav University of Delaware for The IceCube Collaboration ISVHECRI2010 June 28 - July 2, 2010 Fermilab.
Encontro com a Ciência e a Tecnologia em Portugal 4-7 Julho 2010.
26th Oct 2006CAA cross cal meeting, MSSL RAPID Calibration Status RAPID team.
24 th October 2002 Alex Howard, Imperial College, London 8 th TopIcal Seminar on Innovative Radiation and Particle Detectors Slide1 Simulation and Analysis.
Geant4 Simulation of Test-Mass Charging in the LISA Mission
The Transition Radiation Detector for the PAMELA Experiment
Project Structure Advanced Neutron Spectrometer on the International Space Station (ANS-ISS) Mark Christl NASA/MSFC Oct 23, 2015 Honolulu, HI 1 1.
Geant4 and Microelectronics – Recent Successes, Looming Concerns
Geant4 REMSIM application
Lunar Reconnaissance Orbiter CRaTER Critical Design Review
R. Bucˇık , K. Kudela and S. N. Kuznetsov
Gamma-ray Albedo of the Moon Igor V. Moskalenko (Stanford) & Troy A
P. Nieminen, E. Daly, A. Mohammadzadeh, H.D.R. Evans, G. Santin
Chapter 27 Early Quantum Theory
CRaTER Science Requirements
Simulation and Analysis for Astroparticle Experiments
Recent, undergoing and planned ESA-supported activities concerning development, use and promotion of the Geant4 toolkit E. Daly, R. Nartallo, P. Nieminen.
Application of neutron monitor data for space weather
1.6 Glow Discharges and Plasma
Space environmental study for ASTROD I
Presentation transcript:

G Charging Workshop - MIT - July071 T.J. Sumner – ICL lead and LIST Henrique Araujo, Markus Schulte, Diana Shaul, Christian Trenkle (now Astrium), Simon Waschke, Peter Wass (now Trento) Heritage ( 10 year mission ) Electrostatic Modelling LTP EM Design GEANT Modelling Imperial College – LISA and LISAPF G

Charging Workshop - MIT - July072 Charging of isolated proof- masses in satellite experiments  Effects of free charge Lorentz force Electrostatic forces from mirror charges Spring Constants Forces from applied voltages  Charging Estimates Rates Timelines  Charge Management Measurement procedures Discharge procedures

G Charging Workshop - MIT - July073 Lorentz force noise Metallic Enclosure (Blaser)

G Charging Workshop - MIT - July074 Lorentz force noise See later!

G Charging Workshop - MIT - July075 Electrostatic forces

G Charging Workshop - MIT - July076 Electrostatic forces Common-mode voltage effects disappear to first order in force Differential-mode voltages used for charge measurement – see later

G Charging Workshop - MIT - July077 Summary of Charge Limits Effect Limit (C) Lorentz Noise4x (10 -4 Hz) Displacement Noise4x Charge Noise (  d) 1.4x (10 -4 Hz) Stiffness (assymmetry)3x (≡70mV) Stiffness (  V dm ) Stiffness (1V cm )4x Potential (noise)10 -2 Potential (noise) (1V cm )3x Assumptions!! dd10  m VnVn 10  V/  Hz

G Charging Workshop - MIT - July078 LISA Geant4 Geometry Model S/C: LISA Solid Model (GSFC/NASA) ~200 placed volumes (85% total mass) LTP IS: CAD (Carlo Gavazzi Space) 46 mm cube test mass, YZ injection

G Charging Workshop - MIT - July079

G Charging Workshop - MIT - July0710 Charged Particle Environment Galactic Cosmic Rays Solar Flare Events

G Charging Workshop - MIT - July0711 Geant4 Physics Processes Electromagnetics E th = 250 eV Photo/Electronuclear Hadronics Intra-nuclear cascades for protons and light ions Decays Hadronic Models Most G4 physics, including latest developments* * Working within GEANT4 development team

G Charging Workshop - MIT - July0712

G Charging Workshop - MIT - July0713 Charging Multiplicity Charge Spectrogram LISA solmin Statistical Fluctuations LISA solmin  Q=  Q i  2 ~2.5  Q 1

G Charging Workshop - MIT - July0714 Charging Spectrum LISA solmin Charging Spectra I

G Charging Workshop - MIT - July0715 Spectral Charging Efficiency p stopping in test mass Cascade/String change-over String Model G4QGSP Cascade Model G4BinaryCascade p stopping before TM

G Charging Workshop - MIT - July0716 primarysolarGCR fluxtimeline particleactivity , /s/cm 2 , % N 0 (x10 6 ) CPU, daysT, sN 0 /N Q protons He-4min He Total −419 protons He-4max He Total −359 LISA Results CERN LSF Cluster 2.2x10 8 Events several CPU Years 200 s exposure time Latest LISA result – Astropart Phys. 22, (2005) Rate = +50 e/s Noise = 30 e/s/Hz -1/2

G Charging Workshop - MIT - July0717 Non-Simulated Physics Kinetic Electron Emission  Potential Charging Processes:  Electron-induced kinetic emission  Ion-induced kinetic emission  Atom sputtering (<0.01 at/s)  X-ray transition radiation (<1 +e/s)  X-ray Cherenkov radiation (<1 +e/s)  Cosmogenic activation (<<1 +e/s)  Hadron-induced x-ray emission Kinetic emission of low energy secondary electrons (<50 eV) due to incident electrons (EIEE) and ions (IIEE) can be significant !

G Charging Workshop - MIT - July0718 GP-B Simulations Flare result is ~2-3 times too high but does not allow for spectral modification of proton flux at GP-B orbit

G Charging Workshop - MIT - July0719 Shaul et al., 2004 Data Analysis and Clean-up

G Charging Workshop - MIT - July0720 Charging from Solar Events Large solar flares (<1 /yr) can seriously disrupt normal operation More modest flares (~1/yr) can deposit >10 9 charges in ~1 day Small but frequent flares (>5 /yr) will contaminate the science data Recommendation on specification of radiation monitor for LISAPF SEP Event DistributionSEP Event Prediction solar maximum

G Charging Workshop - MIT - July0721 Charging from Solar Flares I Small SEP Event (GOES - May ) Event fluence 6x10 5 p/cm 2 Charging rate at peak flux ~160 +e/s Total event charge ~3x10 6 +e Frequency 5-10 /year Event fluence ~10 9 p/cm 2 Charging rate at peak flux ~ e/s Total event charge ~5x10 9 +e Frequency << 1 /year Large SEP Event (GOES - Sep ) Need to characterise SEP distribution to lower fluences

G Charging Workshop - MIT - July0722 CR Variability – INTEGRAL and POLAR No dramatic concern - some indications of isolated CR fluctuations, probably induced by solar events.

G Charging Workshop - MIT - July0723 Radiation Monitor ICL Detector concept: 2 PIN diodes in tetescopic configuration: PINs have been kindly provided by GLAST collaboration

G Charging Workshop - MIT - July0724 Radiation Monitor Coincidence spectrum for GCRCoincidence spectrum for SEP

G Charging Workshop - MIT - July0725 Radiation Monitor PIN Diode PCB Cu shielding Radiation Monitor Geometry GCR + SEP particle fluxes Energy Spectrum 600s Energy Spectrum - entire simulation Angular acceptance

G Charging Workshop - MIT - July0726 The CMS is a distributed system Lamp assembly UV Lamps and optics Electronics Fibre-optic cables Inertial Sensor Electronics Interface kit Computer Software Spacecraft Electronics Modules Optical Bench Procedures Design Parameters Subsystem TestsSystem Tests CMS functions

G Charging Workshop - MIT - July0727 Inertial Sensor Design Electrode isolation Capacitance matrix Capacitance gradient Cross-coupling matrix Caging design Charge sensitivity – electrode layout

G Charging Workshop - MIT - July0728 Charge Management System  Charge Measurement using applied dither force in transverse direction with capacitive sensing of test-mass response.  Discharge technique using differential illumination of surfaces with UV illumination, with bias voltage enhancement if needed.

G Charging Workshop - MIT - July0729 Charge Measurement Dither Technique Different gaps in each direction give different measurement authority Need to see dither above residual drag-free position noise Assume transverse dither with 1nm/  Hz position noise

G Charging Workshop - MIT - July0730 Charge Neutralisation LT i  lf T f  vc 2 T vc ~ 3x10 10 photons/s Oxford Instruments HPSUV1000 fibre Caburn FFTUV1000 (Special – remade in titanium with epoxy seal)

G Charging Workshop - MIT - July0731 Dual Surface Illumination with dc bias voltage to modify ballistic trajectories —2.1 V/m/eV gives  Q/  t ~ 15 charges/s —80 V/m/eV gives  Q/  t ~ 6x10 3 charges/s —500 V/m/eV gives  Q/  t ~ 3x10 4 charges/s Differential Surface Illumination using individual lamp currents to modify electron fluxes —L(  ) and L(I) Charge Transport -  t

G Charging Workshop - MIT - July0732 Polar Ouput Charge Transport

G Charging Workshop - MIT - July0733 Differential Surface Illumination Charge Transport Electrode:Housing:TM 1 : 1.3 : : 1.1 : x10 3 < <+3.5x10 3 /s Add dc bias to drive harder when required  x5

G Charging Workshop - MIT - July0734 Charge Transport Test Rig UV Lamp

G Charging Workshop - MIT - July0735 Charge control with lamps Electrode lamp off TM lamp off, electrode lamp on TM Lamp on Rate ~ ±40000e/s Simulator with physics in place for LTP UV Lamp OFF UV Lamp ON

G Charging Workshop - MIT - July0736 LISAPF Lamps Derivative of those used on EINSTEIN and ROSAT – 6,000 hr lifetimes Low pressure electric discharge cf rf discharge used on GPB. 8 housed in 3.5kg package for LISAPF 100:1 dynamic range using PWM at kHz frequencies 3W per lamp

G Charging Workshop - MIT - July0737