Electroweak Correction for the Study of Higgs Potential in LC LAPTH-Minamitateya Collaboration LCWS05 2005.3.19, Stanford U. presented by K.Kato(Kogakuin.

Slides:



Advertisements
Similar presentations
Feynman Diagrams Feynman diagrams are pictorial representations of
Advertisements

What do we know about the Standard Model? Sally Dawson Lecture 4 TASI, 2006.
W Physics at LEP Paolo Azzurri Pisa (ALEPH-CMS ) Hanoi August 7, th Rencontres du Vietnam New Views in Particle Physics.
1 Top Production Processes at Hadron Colliders By Paul Mellor.
The minimal B-L model naturally realized at TeV scale Yuta Orikasa(SOKENDAI) Satoshi Iso(KEK,SOKENDAI) Nobuchika Okada(University of Alabama) Phys.Lett.B676(2009)81.
CompHEP: Present and Future Alexandre Kryukov on behalf of CompHEP collaboration (E. Boos, V. Bunichev, M. Dubinin, L. Dudko, V. Ilyin, A. Kryukov, V.
Jörgen Sjölin Stockholm University LHC experimental sensitivity to CP violating gtt couplings November, 2002 Page 1 Why CP in gtt? Standard model contribution.
Summary of Results and Projected Sensitivity The Lonesome Top Quark Aran Garcia-Bellido, University of Washington Single Top Quark Production By observing.
Group F : Loop Calculations LCWS Stanford Univ. K.Kato (Kogakuin) Highlights.
Powerpoint Templates Page 1 Powerpoint Templates Looking for a non standard supersymmetric Higgs Guillaume Drieu La Rochelle, LAPTH.
What do we know about the Standard Model? Sally Dawson Lecture 2 SLAC Summer Institute.
EW Corrections for CMS Z and Drell-Yan Measurements Dimitri Bourilkov University of Florida For the CMS Collaboration Working Group on Electroweak precision.
P Spring 2003 L12Richard Kass The properties of the Z 0 For about ten years the Z 0 was studied in great detail at two accelerator complexes: LEP.
1 T-odd asymmetries in top-quark decay Hiroshi Yokoya (Niigata U) KEKPH2007 3/1-3 (2007), KEK in collaboration with Kaoru Hagiwara (KEK) and Kentarou Mawatari.
1 Electroweak Baryogenesis and LC Yasuhiro Okada (KEK) 8 th ACFA LC workshop July 12, 2005, Daegu, Korea.
Contents 1. Introduction 2. Analysis 3. Results 4. Conclusion Constraint on new physics by measuring the HVV Couplings at e+e- LC In collaboration with.
Physics potential of Higgs pair production at a  collider Shinya KANEMURA (Univ. of Toyama) On behalf of E. Asakawa (Meiji-Gakuin), D.Harada (Sokendai),
Masato Yamanaka (Tokyo university, ICRR) Collaborators Shigeki Matsumoto Joe Sato Masato Senami PHYSICAL REVIEW D 80, (2009)
Numerical approach to multi- loop integrals K. Kato (Kogakuin University) with E. de Doncker, N.Hamaguchi, T.Ishikawa, T.Koike, Y. Kurihara, Y.Shimizu,
The last talk in session-3. Full one-loop electroweak radiative corrections to single photon production in e + e - ACAT03, Tsukuba, 4 Dec LAPTH.
K*Λ(1116) Photoproduction and Nucleon resonances K*Λ(1116) Photoproduction and Nucleon resonances Sang-Ho Kim( 金相鎬 ) (NTG, Inha University, Korea) In collaboration.
1 Summary talk for ILC Physics Yasuhiro Okada (KEK) November 12, 2004 ACFA LC7, Taipei.
Th.Diakonidis - ACAT2010 Jaipur, India1 Calculating one loop multileg processes A program for the case of In collaboration with B.Tausk ( T.Riemann & J.
Trilinear Gauge Couplings at TESLA Photon Collider Ivanka Božović - Jelisavčić & Klaus Mönig DESY/Zeuthen.
14-18 November, PrahaECFA/DESY Linear Collider Workshop 1 TRILINEAR GAUGE COUPLINGS AT PHOTON COLLIDER - e  mode DESY - Zeuthen Klaus Mönig and Jadranka.
Contents 1. Introduction 2. Analysis 3. Results 4. Conclusion Presice measurement of the Higgs-boson electroweak couplings at Linear Collider and its physics.
Dynamical EWSB and Fourth Generation Michio Hashimoto (KEK) Mt. Tsukuba M.H., Miransky, M.H., Miransky, in preparation.
MadGraph/MadEvent Automatically Calculate 1-Loop Cross Sections !
New Physics search via WW-fusion at the ILC Koji TSUMURA (Osaka Univ. → KEK after April ) in collaboration with S. Kanemura & K. Matsuda KEK Theory Meeting.
Status of LC Physics Study in Japan (II) Higgs/GRACE /Simulation study towards Higgs precision Measurement JAPAN LC Physics study group and KEK Minamitateya.
1 Higgs Physics Yasuhiro Okada (KEK) November 26, 2004, at KEK.
Higgs boson pair production in new physics models at hadron, lepton, and photon colliders October Daisuke Harada (KEK) in collaboration.
Exotic baryon resonances in the chiral dynamics Tetsuo Hyodo a a RCNP, Osaka b ECT* c IFIC, Valencia d Barcelona Univ. 2003, December 9th A.Hosaka a, D.
1 Why Does the Standard Model Need the Higgs Boson ? II Augusto Barroso Sesimbra 2007.
Monday, Apr. 7, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #20 Monday, Apr. 7, 2003 Dr. Jae Yu Super Symmetry Breaking MSSM Higgs and Their.
The Importance of the TeV Scale Sally Dawson Lecture 3 FNAL LHC Workshop, 2006.
Renormalization of the Higgs Triplet Model Mariko Kikuchi ( Univ. of Toyama ) Collaborators M. Aoki ( Kanazawa Univ. ), S. Kanemura ( Univ. of Toyama ),
LCWS 05 1 Experimental studies of Strong Electroweak Symmetry Breaking in gauge boson scattering and three gauge boson production P.Krstonosic Work done.
Six-Fermion Production at ILC with Grcft Calculation of the Six-Fermion Production at ILC with Grcft -New algorithm for Grace- KEK Minamitateya group Yoshiaki.
EPS03 Aachen 4f at LEP2 Maurizio Bonesini 4f Final States and Photoproduction at LEP2 Maurizio Bonesini Sezione INFN Milano ( Dipartimento di Fisica G.
LHC Higgs Cross Section Working Group: Vector Boson Fusion Sinead Farrington University of Oxford Co-contacts: A. Denner, C. Hackstein, D. Rebuzzi, C.
Drell-Yan Spectrum and PDFs Dimitri Bourilkov University of Florida Di-lepton Meeting, LPC, FNAL, October 2, 2008.
Higgs Summary Alexei Raspereza On behalf of Higgs Working Group ECFA Workshop, Warsaw 12/06/2006 Outline  Current Status  Contributions in Warsaw  Theory.
Session 3 J. Fujimoto KEK May 27, Feynman Diagram Calculations automatization tree level loop level multi-loop Event Generators.
New Physics effect on Higgs boson pair production processes at LHC and ILC Daisuke Harada (KEK, Graduate University for Advanced Studies) in collaboration.
Precise prediction for ILC experiment HAN, Liang Univ. of Science &Technology of China ( on behalf of U.S.T.C Hep Phenomenology Group )
Hong-Jian He Tsinghua University 9th ACFA ILC Workshop Physics Session Summary Feb. 4-7, 2007, IHEP, Beijing.
Some remarks on Higgs physics The Higgs mechanism Triviality and vacuum stability: Higgs bounds The no-Higgs option: strong WW scattering These are just.
Study of Diboson Physics with the ATLAS Detector at LHC Hai-Jun Yang University of Michigan (for the ATLAS Collaboration) APS April Meeting St. Louis,
One-loop electroweak corrections to double Higgs production in e+e-HH -Current status of Higgs studies with GRACE- KEK Minamitateya - LAPTH.
From Lagrangian Density to Observable
Automated Tree-Level Feynman Diagram and Event Generation
Dr. Terrance Figy Assistant Professor
Measurement of SM V+gamma by ATLAS
Particle Physics Tour with CalcHEP
ACFA 7th Nov Taipei Taiwan
Charged Current Cross Sections with polarised lepton beam at ZEUS
QCD Radiative Corrections for the LHC
An Effective operators analysis associated with the Higgs
K Kato, E de Doncker, T Ishikawa and F Yuasa ACAT2017, August 2017
Kyoko Iizuka (Seikei Univ.) T.Kon (Seikei Univ.)
Precision Control and GRACE
New Physics from Higgs self-coupling measurement
Lecture 2: Invariants, cross-section, Feynman diagrams
The Color Octet Effect from at B Factorry
Single Diffractive Higgs Production at the LHC *
Daisuke Harada (Sokendai, KEK)
Charged Current Cross Sections with polarised lepton beam at ZEUS
Associated production of Higgs boson with μ+μ - at CEPC
Can new Higgs boson be Dark Matter Candidate in the Economical Model
Presentation transcript:

Electroweak Correction for the Study of Higgs Potential in LC LAPTH-Minamitateya Collaboration LCWS , Stanford U. presented by K.Kato(Kogakuin U.)

Introduction LC : high-precision experiments  Requires the same level theoretical prediction = Needs higher order calculation Higgs study : Central target  Interesting channels = multi-body final states 1-loop correction to e + e -  3, 4-bodies : Great Progress since Sept. 2002

cross sections 2  3,4 processes important Main channels WWH vs ZZH Higgs Potential Yukawa coupl.

number of diagrams ( GRACE:NLG model ) tree1-loop 4(1)341(119) RADCOR / Loops & Legs Sept (2)1350(249) 12(6)2327(758) 27(6)5417(1597) 42(2)4470(510) A.Denner, J.Kublbeck, R.Mertig, M.Bohm, Z.Phys.C56(1992) 261; B.A.Kniehl, Z.Phys.C55(1992) 605. with(without) e-scalar couplings 10 years required to develop 2  3 tools Automated Systems

Full 1-loop RC available GRACE, PLB559(2003)252 Denner et al., NPB660(2003)289 GRACE, PLB571(2003)163 You et al., PLB571(2003)85 Denner et al., PLB575(2003)290 GRACE, PLB576(2003)152 Zhang et al., PLB578(2004)349 Denner etal., hep- ph/ GRACE, PLB600(2004)65 GRACE, NIM A534(2004)334 GRACE, Talk by Y.Yasui at Durham(Sep.2004)

User input Theory model file Diagram generator amplitude generator Library CHANEL, loop Kinematics library kinematics code generated code diagram description convergence information Make file etc. symbolic code REDUCE, Form etc. PS file Drawer BASES(MC integral) SPRING (EG manager) parameter file Diagrams (figure) Events Cross sections distributions TREE LOOP FORTRAN code.fin.mdl.rin

Higgs Potential Something required to provide mass Key for the structure of standard model Window to New Physics Double (triple) Higgs production Process

e + e -  νν HH tree old parameter set HHH coupling dependence SM: δΛ =0

νν HH vs ZHH Tree

Low W High W dominant mechanism (approximation) FULL calculation

e + e -  νν HH

W + W -  HH A nnihilation B oson Exchange C ontact Interaction

W + W -  HH tree … 6 diagrams Annihilation, Boson exch., Contact int. B  A, C … opposite sign 1-loop … 827 diagrams  13 groups A : vertex corr.HHH, WWH, AWW, ZWW B : vertex corr. WWH, WχH C : Box

Check : Cuv independence Cuv=0Cuv=10000Cuv=100

LGNLG Cuv=0 Cuv=100 Linear Gauge vs Non-Linear Gauge

leading m t formulas A: C H +C W B: 2C W C: C 4 M W = M Z = M H =120 m t =180 α=1/

proof of the formulas and the performance of GRACE system real world : NOT m t >> W, M H, M Z,… OK

tree+leading mt correction full EW correction (w/o QED)

W + W -  HH δ V λ= Gev δ V QED δWδW δ W (Gm)

e + e -  νν HH number of diagrams ν e... tree= 81 loop=19638 (prod. set = 12 x 3416) 50M lines of Fortran code ν mu... tree= 27 loop=8292 (prod. set = 6 x 1754)

e + e -  νν HH

hep-ph/ Phys.Lett.B 576(2003)152. “s-channel”

e + e -  νν HH Full calculation M H =120GeV

e + e -  νν HH W=0.5TeV W=2.5TeV W=2.0TeV W=1.5TeV W=1.0TeV M(HH) (TeV) Tree Invariant mass of HH

Higgs Potential channel ee  νν HH cross section and its EW correction is calculated. σ =O(100 ab) and greater than ee  ZHH in high-E LC region ( ≧ 1TeV). δ(Gmu) is ~10% for >700GeV. Large diviation from ee  ZHH dominated by s- channel. WW  HH is studied to check the t-channel structure of ee  νν HH and has shown validity and limitation of the leading m t formulas. Summary

e + e -  νν HH

hep-ph/ Phys.Lett.B 559(2003) 252. s,t channels show different behavior genuine weak correction in G-scheme is -2 ~ -4%

hep-ph/ Phys.Lett.B 571(2003) 163.

system components Diagram generation for input process Amplitude/Matrix element generation Kinematics and Integration (efficiency) Event generation (efficiency & weight) Peripheral tools: rule generator, diagram selection, QED radiation, PDF, loop integral library, multi-process, color flow and interface for hadronization, etc.

5-point functions rank M BOX rank M-1 scalar 5-pnt BOX

δ(QED), δ(EW) phase space subtraction = radiator non-QED virtural corrections

Non-linear gauge fixing terms

Samples of NLG Feynman rules ghost-ghost- vector-vector / ghost-ghost-scalar-scalar modified

Numerator structure is the same as Feynman gauge  Loop integral library Vertices modified general values  #diagrams Non-linear gauge Check gauge invariance  Independence on gauge parameters “old” usage  reduce #diagram