Franz Hofmann, Jürgen Müller, Institut für Erdmessung, Leibniz Universität Hannover Institut für Erdmessung Hannover LLR analysis software „LUNAR“

Slides:



Advertisements
Similar presentations
Lunar Laser Ranging - A Science Tool for Geodesy and General Relativity Jürgen Müller Institut für Erdmessung, Leibniz Universität Hannover, Germany 16th.
Advertisements

Obliquity-oblateness feedback at the Moon Bruce G. Bills 1 with help from William B. Moore 2 Matthew A. Siegler 3 William I. Newman 3 1 Jet Propulsion.
Processing of VLBI observation in St. Petersburg University Kudryashova Maria Astronomical Institute of Saint Petersburg University.
Principles of the Global Positioning System Lecture 19 Prof. Thomas Herring Room A;
Manipulator Dynamics Amirkabir University of Technology Computer Engineering & Information Technology Department.
Effect of Surface Loading on Regional Reference Frame Realization Hans-Peter Plag Nevada Bureau of Mines and Geology and Seismological Laboratory University.
Institut for Geodesy Research Unit Earth Rotation and Global Dynamic Processes Earth Orientation Parameters from Lunar Laser Ranging Liliane Biskupek Jürgen.
VieVS User Workshop 7 – 9 September, 2010 Vienna Hana Spicakova Results obtained using VieVS: Love numbers and FCN period presented at IVS General Meeting.
VieVS User Workshop 14 – 16 September, 2011 Vienna VIE_MOD stations corrections Hana Spicakova.
Orbit Determination Software at ESOC Flight Dynamics
Excess phase computation S. Casotto, A. Nardo, P. Zoccarato, M. Bardella CISAS, University of Padova.
ME Robotics Dynamics of Robot Manipulators Purpose: This chapter introduces the dynamics of mechanisms. A robot can be treated as a set of linked.
VieVS User Workshop 14 – 16 September, 2011 Vienna VIE_MOD Lucia Plank.
1 Towards the relativistic theory of precession and nutation _ S.A. Klioner Lohrmann Observatory, Dresden Technical University Problems of Modern Astrometry,
Euler Rotation. Angular Momentum  The angular momentum J is defined in terms of the inertia tensor and angular velocity. All rotations included  The.
Coordinate-systems and time. Seeber 2.1. NON INERTIAL SYSTEM CTS: Conventional Terrestrial System Mean-rotationaxis Greenwich X Y- Rotates.
Relativistic time scales and relativistic time synchronization
Manipulator Dynamics Amirkabir University of Technology Computer Engineering & Information Technology Department.
General-Relativistic Effects in Astrometry S.A.Klioner, M.H.Soffel Lohrmann Observatory, Dresden Technical University 2005 Michelson Summer Workshop, Pasadena,
Gravitomagnetism The Myth and the Legend
Lecture Notes on Astrometry Earth Rotation Rotation angle: UT1...S Motion of z-axis: Non-Diurnal: Precession...P + Nutation...N Nearly Diurnal:
Circular Motion and Gravity Physics 201 Lecture 5.
Determination of the Geodetic Rotation of the Solar System Bodies by means of Spectral Analysis Method G.I. Eroshkin and V.V. Pashkevich Central (Pulkovo)
11 Regarding the re-definition of the astronomical unit of length (AU) E.V. Pitjeva Institute of Applied Astronomy, Russian Academy of Sciences Workshop.
Coordinate systems on the Moon and the physical libration Natalia Petrova Kazan state university, Russia 20 September, 2007, Mitaka.
Dynamics.  relationship between the joint actuator torques and the motion of the structure  Derivation of dynamic model of a manipulator  Simulation.
1 Ephemerides in the relativistic framework: _ time scales, spatial coordinates, astronomical constants and units Sergei A.Klioner Lohrmann Observatory,
University of Colorado Boulder ASEN 5070: Statistical Orbit Determination I Fall 2014 Professor Brandon A. Jones Lecture 3: Basics of Orbit Propagation.
MAGE Mid-term review (23/09/04): Scientific work in progress « Integrating the motion of satellites in a consistent relativistic framework » S. Pireaux.
Athanasios Dermanis and Dimitrios Tsoulis Numerical evidence for the inconsistent separation of the ITRF-ICRF transformation into precession-nutation,
1 Average time-variable gravity from GPS orbits of recent geodetic satellites VIII Hotine-Marussi Symposium, Rome, Italy, 17–21 June 2013 Aleš Bezděk 1.
Lecture 6: Gravity and Motion Review from Last Lecture… Newton’s Universal Law of Gravitation Kepler’s Laws are special cases of Newton’s Laws bound.
Precession, nutation, pole motion and variations of LOD of the Earth and the Moon Yuri Barkin, Hideo Hanada, Misha Barkin Sternberg Astronomical Institute,
Crash Course of Relativistic Astrometry Four Dimensional Spacetime Poincare Transformation Time Dilatation Wavelength Shift Gravitational Deflection of.
SNARF: Theory and Practice, and Implications Thomas Herring Department of Earth Atmospheric and Planetary Sciences, MIT
Navigation and Ancillary Information Facility NIF Planetary Constants Kernel PCK March 2006.
University of Colorado Boulder ASEN 5070: Statistical Orbit Determination I Fall 2015 Professor Brandon A. Jones Lecture 3: Time and Coordinate Systems.
On the geodetic rotation of the major planets, the Moon and the Sun G.I. Eroshkin and V.V. Pashkevich Central (Pulkovo) Astronomical Observatory of the.
Gravimetry Geodesy Rotation
Reference Frame Theory & Practice: Implications for SNARF SNARF Workshop 1/27/04 Geoff Blewitt University of Nevada, Reno.
1 Honors Physics 1 Summary and Review - Fall 2013 Quantitative and experimental tools Mathematical tools Newton’s Laws and Applications –Linear motion.
Investigation of the short periodic terms of the rigid and non-rigid Earth rotation series V.V. Pashkevich Central (Pulkovo) Astronomical Observatory of.
Space-Time coordinates are not fundamental,
LLR Analysis Workshop John Chandler CfA 2010 Dec 9-10.
Parameters : Temperature profile Bulk iron and olivine weight fraction Pressure gradient. Modeling of the Martian mantle Recently taken into account :
Robotics II Copyright Martin P. Aalund, Ph.D.
Principles of the Global Positioning System Lecture 18 Prof. Thomas Herring Room A;
LLR Analysis – Relativistic Model and Tests of Gravitational Physics James G. Williams Dale H. Boggs Slava G. Turyshev Jet Propulsion Laboratory California.
Catherine LeCocq SLAC USPAS, Cornell University Large Scale Metrology of Accelerators June 27 - July 1, 2005 Coordinate Systems 1 Coordinate Systems Purpose:
The Newtonian contributions from the Moon, Sun and Planets Basis for a native relativistic software integrating the motion of satellites Sophie PIREAUX.
Satellite geodesy (ge-2112) Introduction E. Schrama.
What Goes into a Pulsar Timing Model? David Nice Physics Department, Princeton University Pulsar Timing Array: A Nanohertz Gravitational Wave Telescope.
Advanced Computer Graphics Spring 2014 K. H. Ko School of Mechatronics Gwangju Institute of Science and Technology.
The Solar System Missions. Comparative Planetology * The study of the similarities and dissimilarities of the constituents of the solar system. * Provides.
12.201/ Essentials of Geophysics Geodesy and Earth Rotation Prof. Thomas Herring
Celestial Mechanics III
Euler Parameters and Bowling ball dynamics a la Huston et al. Andrew Kickertz 5 May 2011.
Mission Analysis with STK
A Modified Liouville Equation for the Triaxial Earth with Frequency-dependent Responses Wei Chen & WenBin Shen Department of Geophysics, School of Geodesy.
Lecture Rigid Body Dynamics.
Lecture 16 Newton Mechanics Inertial properties,Generalized Coordinates Ruzena Bajcsy EE
ASEN 5050 SPACEFLIGHT DYNAMICS Intro to STK, More 2-Body
Planetary Constants Kernel PCK
Manipulator Dynamics 2 Instructor: Jacob Rosen
Advanced Computer Graphics Spring 2008
X SERBIAN-BULGARIAN ASTRONOMICAL CONFERENCE 30 MAY - 3 JUNE, 2016, BELGRADE, SERBIA EARTH ORIENTATION PARAMETERS AND GRAVITY VARIATIONS DETERMINED FROM.
Rigid Body Dynamics ~ f = p h g
The fundamental astronomical reference systems for space missions and the expansion of the universe Michael Soffel & Sergei Klioner TU Dresden.
Numerical evidence for the inconsistent separation
Presentation transcript:

Franz Hofmann, Jürgen Müller, Institut für Erdmessung, Leibniz Universität Hannover Institut für Erdmessung Hannover LLR analysis software „LUNAR“

Contents  General  Ephemeris integration  Integration of partial derivatives  Parameter estimation

General  Coded in FORTRAN90, quadruple precision  Integrator -Adams-Bashfort algorithm -Multi step integration method -Variable step size -Output every 0.3 days  Coordinate systems -Barycentric ecliptical for ephemeris and analysis -Stations geocentric (ITRF) -Reflectors selenocentric (principal axis system)  Time -UTC  TAI  TT  TDB (Hirayama + station dependent term)

General - LUNAR Ephemerides of the Moon (solar system) Eulerian angles  Earth-Moon-Vector Further derivatives Parameter estimation  Derivatives of orbit/rotation with respect to

General - LUNAR …

Ephemeris integration

 Integration of EIH equations of motion -Barycentric ecliptical system -Sun, Moon, all planets, Ceres, Vesta, Pallas, Juno, Iris, Hygiea, Eunomia Inititial values planets: DE421 Initial values Asteroids: JPL/Horizons (DE405) -No radiation pressure  Additional non-relativistic accelerations -Earth  Moon -Moon  Earth -Earth  Sun -Moon  Sun -Sun  Earth, Moon -Sun  Mercure to Saturn -Tidal acceleration Ephemeris integration – translational motion

Ephemeris integration - rotation  Lunar orientation -Integrated together with translational motion -Basis: Euler equations -Torques from Earth and Sun Earth  Moon Sun  Moon Earth  Moon -Relativistic torques (geodetic and Lense-Thirring) from Sun and Earth -Elasticity: variation in the tensor of inertia with one Love number (k 2 ) -Dissipation: time delay – only effect from Earth -Fluid core moment, CMB dissipation  Earth orientation -Empirically -Precession, nutation according to IAU resolutions GMST with offset to the principal axis system

Ephemeris integration  Further model extensions (implemented, e.g. for special tests) -Time variable G: -Geodetic precession of the lunar orbit in addition to EIH -Violation of equivalence principle -Acceleration due to dark matter in the galactic center (violation of equivalence principle) -Yukawa term for modifying Newtons 1/r 2 law of gravity -Preferred frame effects  1,  2 and metric parameters ,  (Will, 1993) -Gravitomagnetic effects (Soffel et al., 2008) -Optional spin-orbit coupling (Brumberg/Kopeikin)

Partial derivatives integration

 Dynamical partials of orbit/rotation - determined by integrating, 414 derivatives -Therefore: calculating a simplified ephemeris Only Newtonian equations of motion, Sun  Neptun point masses Translational motion: Earth‘s, Moon‘s grav. field up to degree 3 Tidal accelerations Rotation: Earth  Moon Partial derivatives integration

Parameter estimation …

 Partials -Computation of complete derivatives from single contributions Dynamical Geometrical direct from observation equation (reflector/station coordinates) Numerical (relativistic parameters) -Partials calculated at reflection time (Lagrangian interpolation, degree 10) and doubled  Modelling of the observed pulse travel time -Time-trafo UTC (NP)  TAI  TT  TDB (Hirayama + station dependent term which is not included in Hirayama) -Coordinate-trafo ITRF, SRF, barycentric -Ephemeris interpolation for transmission-, reflection-, reception-time with Lagrangian interpolation, degree 10 Parameter estimation

-Computation of station coordinates + corrections Earth‘s orientation with high accuracy (IERS Conv. 2003, C04): Pole coordinates, pole offsets, dUT1 with longperiodic, diurnal and sub-diurnal variations Precession + nutation (IAU resolutions 2006) Longperiodic latitude variation (before 1983, Dickey et al., 1985) Lunisolar tides of elastic Earth (IERS Conv. 2003) Tidal effects due to polar motion (IERS 1992) Ocean loading (IERS Conv.1996) Atmospheric loading Continental drift rates (NUVEL1A or estimated) Lorentz and Einstein-contraction of coordinates (also reflector coordinates)

Parameter estimation -Reflector coordinates transformed with integrated Eulerian angles -Light propagation Atmospheric time delay from Mendes and Pavlis (2004) Shapiro delay due to Sun and Earth Biases -Radiation pressure from Vokrouhlicky (1997)  Weighting -From normal point uncertainty for every single observation -Scaling is possible (e.g., station, time span) -Variance component analysis in preparation

Parameter estimation  Estimation process -Weighted least squares adjustment -We use ca NP up to now  how many NP exist?  CDDIS approx NP?  reference data set with all original observations -Outlier test by ratio residuals/accuracy of residuals (not in every iteration) -Iterative process (ephemeris integration  parameter estimation) -Output NP residuals Correlation matrix Corrections to the parameters + uncertainties

Parameter estimation  Possible solve-for parameters: -Earth related parameters Station coordinates (McDonald as one station with local ties) Station velocity components Biases for every station (whole time span) Biases for shorter time spans 4 nutation periods with 4 coefficients each (18.6yr, 9.3yr, 1 yr, ½yr) Precession rate Earth k 2  for tidal acceleration Additional rotations for transformation terrestrial  inertial Corrections to initial Earth position and velocity Coefficients for longperiodic latitude variation before 1983 Optional pole coordinates for nights with > 10 normal points

Parameter estimation -Lunar related parameters Lunar initial position, velocity, rotation vector, Eulerian angles Lunar gravity field coefficients up to degree 4 (degree 4, S31, S33 fixed on LP165P values) Reflector coordinates Dynamical flattening  and  Lunar k 2 and time lag -GM EM -C20 sun (fixed to -2x10 -7 ) -Relativistic parameters

Thank you for your attention