Heavy elements and reddening in Gamma Ray Bursts Sandra Savaglio Johns Hopkins University In collaboration with Mike Fall (STScI) & Fabrizio Fiore (Rome.

Slides:



Advertisements
Similar presentations
Gas in GRB hosts Yuri Shchekinov Southern Federal University Many faces, SAO, Nizhny Arkhyz, Oct
Advertisements

Metals at Highish Redshift And Large Scale Structures From DLAs to Underdense Regions Patrick Petitjean Institut d’Astrophysique de Paris B. Aracil R.
GRBs as cosmological probes Thomas Krühler (DARK) Thanks to J. Fynbo, D. Malesani, J. Hjorth, J. Greiner, D. A. Kann, D. Perley, N. Tanvir, S. Klose and.
The Difference between Neutral- and Ionized-Gas Metal Abundances in Local Star-Forming Galaxies with COS Alessandra Aloisi (STScI) Science with the Hubble.
Edo Berger Carnegie Observatories Edo Berger Carnegie Observatories Probing Stellar to Galactic Scales with Gamma-Ray Bursts.
The Abundance of Free Oxygen Atoms in the Local ISM from Absorption Lines Edward B. Jenkins Princeton University Observatory.
Deciphering the Ancient Universe with Gamma-Ray Bursts Nobuyuki Kawai (Tokyo Tech)
SKA Science Measuring Variations in the Fundamental Constants with the SKA Steve Curran School of Physics School of Physics University of New South Wales.
The faint end …. …. in neutral gas. “luminous”
HIPark – a parked Parkes survey Goals: ultra sensitive to low column densities How sensitive ? … optically thin at the Lyman limit exercise in observational.
Element Abundances at High Redshifts By Max Pettini Presentation By Curtis McCully By Max Pettini Presentation By Curtis McCully.
DETERMINING THE DUST EXTINCTION OF GAMMA-RAY BURST HOST GALAXIES: A DIRECT METHOD BASED ON OPTICAL AND X-RAY PHOTOMETRY Li Yuan 黎原 Purple Mountain Observatory.
Fundamental Properties of GRB-Selected Galaxies: A Swift/VLT Legacy Survey Palli Jakobsson Centre for Astrophysics Research (University of Hertfordshire)
The line-of-sight towards GRB at z = 2.66: Probing matter at stellar, galactic and intergalactic scales Palli Jakobsson Astronomical Observatory.
Missing Photons that Count: Galaxy Evolution via Absorbing Gas (and a little bit of fundamental physics to boot) Chris Churchill (Penn State)
Recycling the Intergalactic Medium
The Canonical Swift/UVOT Lightcurve Sam Oates (UCL-MSSL) On behalf of the Swift/UVOT team UCL DEPARTMENT OF SPACE AND CLIMATE PHYSICS MULLARD SPACE SCIENCE.
“Damped Lyman Alpha Systems” by Wolfe, Arthur M., Gawiser, E. and Prochaska, Jason X. Jean P. Walker Rutgers University Galaxy Formation Seminar.
Simona Gallerani Constraining cosmic reionization models with QSOs, GRBs and LAEs observational data In collaboration with: A. Ferrara, X. Fan, T. Choudhury,
GRBs as Probes of First Light and the Reionization History of the Universe D. Q. Lamb (U. Chicago) Conference on First Light and Reionization Irvine, CA,
UV/Optical Properties of GRBs with Swift UVOT P. Roming (Penn State University)
GRBs as a Probe of the Elemental Abundance History of the Universe D. Q. Lamb (U. Chicago) Workshop on Chemical Enrichment of the Early Universe Santa.
1 GRB Host Galaxies S. R.Kulkarni, E. J. Berger & Caltech GRB group.
Dust and Metal Column Densities in GRB Host Galaxies Patricia Schady (MPE) T.Dwelly, M.J.Page, J.Greiner, T.Krühler, S.Savaglio, S.R.Oates, A.Rau, M.Still.
The Host Galaxies of High-Redshift GRBs Edo Berger Harvard University.
(MNRAS 327, 610, 2001 & 347, 1234, 2004) David Churches, Mike Edmunds, Alistair Nelson - Physics & Astronomy, Cardiff University - Physics & Astronomy,
Gamma-ray Bursts in the E-ELT era Rhaana Starling University of Leicester.
A New Chapter in Radio Astrophysics Dale A. Frail National Radio Astronomy Observatory Gamma Ray Bursts and Their Afterglows AAS 200 th meeting, Albuquerque,
The monitoring of GRB afterglows and the study of their host galaxies with the SAO RAS 6-m telescope from 1997 V. Sokolov et al. The review of main results.
Simona Gallerani Constraining reionization through quasar and gamma ray burst absorption spectra In collaboration with: T. Roy Choudhury, P. Dayal, X.
Blue Channel spectroscopy of quasar absorption lines: Metal abundances and dust in DLYAs Jill Bechtold, Jun Cui (Steward Observatory) Varsha Kulkarni,
Gamma-ray Burst Afterglow Spectroscopy J. P. U. Fynbo, Niels Bohr Institute / Dark Cosmology Centre.
The First Constraint on the Reionization from GRBs: the Case of GRB Tomonori Totani (Kyoto) Nobuyuki Kawai, George Kosugi, Kentaro Aoki, Toru Yamada,
Gamma-Ray Bursts observed with INTEGRAL and XMM- Newton Sinead McGlynn School of Physics University College Dublin.
The observations of GRB optical afterglow with 6-meter telescope: recent results and future plans T.A. Fatkhullin and SAO RAS follow-up team Nizhnij Arkhyz,
Len Cowie STScI March 2006 Metals & Star Formation at High Redshift.
IAU Coll Shanghai 2005 The Dust Obscuration bias in Damped Ly  systems Giovanni Vladilo Osservatorio Astronomico di Trieste Istituto Nazionale.
The Early Time Properties of GRBs : Canonical Afterglow and the Importance of Prolonged Central Engine Activity Andrea Melandri Collaborators : C.G.Mundell,
Gamma-Ray Bursts observed by XMM-Newton Paul O’Brien X-ray and Observational Astronomy Group, University of Leicester Collaborators:- James Reeves, Darach.
Detection of the 2175Å Dust Extinction Feature at high z Junfeng Wang (Penn State/UFL) Collaborators : Jian Ge (U. of Florida), Pat Hall (Princeton U./York.
The Effect of Escaping Galactic Radiation on the Ionization of High-Velocity Clouds Andrew Fox, UW-Madison STScI, 8 th March 2005.
Collaborators Blair Savage, Bart Wakker (UW-Madison) Blair Savage, Bart Wakker (UW-Madison) Ken Sembach (STScI) Ken Sembach (STScI) Todd Tripp (UMass)
Studying GRB Environments and Progenitors with Absorption Spectroscopy Derek B. Fox Astronomy & Astrophysics Penn State University Image: Aurore Simonnet,
Determining the Scale Height of FeIII in the Milky Way by Matt Miller UW REU Summer 2009 Advisor: Dr. Bart Wakker.
Deep Chandra image in the Boötes Field Junxian Wang Johns Hopkins University.
Baryonic Content in the Warm-Hot IGM at Low Redshift George Sonneborn FUSE Project Scientist, NASA/GSFC Mike Shull & Charles Danforth (Univ. Colorado),
Star Formation in Damped Lyman alpha Systems Art Wolfe Collaborators: J.X. Prochaska, J. C. Howk, E.Gawiser, and K. Nagamine.
Star Formation and H2 in Damped Lya Clouds
The GRB Luminosity Function in the light of Swift 2-year data by Ruben Salvaterra Università di Milano-Bicocca.
Elisabetta Maiorano IASF/INAF, Sezione di Bologna & Dip. Astronomia, Università di Bologna GRB : the burst before the Burst.
BBN abundance observations Karl Young and Taryn Heilman Astronomy 5022 December 4, 2014.
A relation to estimate the redshift from the X-ray afterglow light curve Bruce Gendre (IASF-Roma/INAF) & Michel Boër (OHP/CNRS)
“Man cannot discover new oceans unless he has the courage to lose sight of the shore.” Andre Gide ( )
Dust-Obscured Gamma-Ray Bursts and the Cosmic Star-Formation Rate Daniel A. Perley (Caltech) A significant minority of GRBs are heavily obscured 4, 5,
Gamma Ray Burst Spectroscopy!. Collaborators: Caltech/Carnegie/Gemini GRB group including Edo Berger, Derek Fox, Antonino Cucchiari, Shri Kulkarni, Alicia.
Radio afterglows of Gamma Ray Bursts Poonam Chandra National Centre for Radio Astrophysics - Tata Institute of Fundamental Research Collaborator: Dale.
A complete sample of long bright Swift GRBs: correlation studies Paolo D’Avanzo INAF-Osservatorio Astronomico di Brera S. Campana (OAB) S. Covino (OAB)
Dust Extinction in GRBs Patricia Schady UCL-MSSL M.J.Page (MSSL-UCL), S.R Oates (MSSL-UCL), M. Still (MSSL-UCL), M.De Pasquale (MSSL-UCL), T. Dwelly (Southampton.
A connection between the 2175 Å dust feature and CI?
Pharos: distant beacons as cosmological probes Fabrizio Fiore
GRB host galaxies: A legacy approach Daniele Malesani Collaborators:
Extinction Curves from Gamma-ray Burst Afterglows
“Dark” GRB in a Dusty Massive Galaxy at z ~ 2
Jill Bechtold (University of Arizona)
Lecture 6: Gamma-Ray Bursts Light extinction: Infrared background.
Centre for Astrophysics & Cosmology
Galactic Astronomy 銀河物理学特論 I Lecture 3-4: Chemical evolution of galaxies Seminar: Erb et al. 2006, ApJ, 644, 813 Lecture: 2012/01/23.
The extinction law at high redshift (z>4)
Spatial Distribution of Molecules in Damped Lya Clouds
Presentation transcript:

Heavy elements and reddening in Gamma Ray Bursts Sandra Savaglio Johns Hopkins University In collaboration with Mike Fall (STScI) & Fabrizio Fiore (Rome Obs)

Heavy elements and reddening in Gamma Ray Bursts Sandra Savaglio Johns Hopkins University In collaboration with Mike Fall (STScI) & Fabrizio Fiore (Rome Obs)  Optical spectra of GRB afterglows  GRB–DLAs vs. QSO–DLAs  Heavy elements and dust Outline

Heavy elements and reddening in Gamma Ray Bursts Acknowledgements Daniela Calzetti – STScI Fiona Harrison – CalTech Tim Heckman – JHU Julian Krolik – JHU Nicola Masetti – CNR, Bologna Eliana Palazzi – CNR Bologna Nino Panagia – STScI James Rhoads – STScI Ken Sembach – STScI

Introduction GRBGRB X-ray positionErrorInstrumentX-ray AfterglowOptical TransientRadio Afterglowz h 58 m 10 s -31° 23'15'*5'Uly/MO/SAX yy h 15 m 16 s -21° 56'1'SAX/WFCyy h 34 m 25 s -76° 02'2'SAX/WFCyyy h 55 m 35 s +40° 56'20*15'HE/Uly/SAX y h 52 m 12 s +43° 01'2.5'SAX/WFCyyy h 04 m 15 s +51° 46'3'*10'Uly/Ko/NEyyy h 25 m 21 s +20° 05'4'*8'Uly/KO/NE yy C16 h 20 m 22 s +29° 25'6'*8'ASM/Uly yy h 13 m 33 s -51° 56'3.5'*16'Uly/KO/NE y h 33 m 55 s +46° 26'14*1'Uly/KO/NE yy h 31 m 50 s -73° 24'2'SAX/WFC yn h 09 m 32 s -72° 09'6'SAX/WFCyyn h 38 m 06 s -80° 30'3'SAX/WFCyyy h 54 m 41 s -26° 45'7'BAT/PCAy y h 25 m 29 s +44° 45'2'SAX/WFCyyy h 59 m 07 s +08° 35.6'4'RXTE/ASMyyy h 17 m 46 s +71° 29.9'4'SAX/WFCyyn h 34 m 54 s -52° 49.9'8'SAX/WFCySNy h 56 m 30 s +65° 12.0'4'SAX/WFCyyn h 08 m 29 s +59° 18.0'2.5'*1'RXTE/ASMyny h 53 m 28 s +79° 17.4'3'SAX/WFCyyy h 01 m 57 s +11° 46.4'3'SAX/WFCyyn0.695 This list URL: ˜ jcg/grbgen.html

Introduction GRBs vs. QSOs redshift distribution

Introduction 0.5 days m R = days m R = days m R =20.65 GRB z GRB =1.475 (Vreeswijk et al., 2001)

Introduction This list URL: ˜ jcg/grbgen.html GRBGRB X-ray positionErrorInstrumentX-ray AfterglowOptical TransientRadio Afterglowz h 58 m 10 s -31° 23'15'*5'Uly/MO/SAX yy h 15 m 16 s -21° 56'1'SAX/WFCyy h 34 m 25 s -76° 02'2'SAX/WFCyyy h 55 m 35 s +40° 56'20*15'HE/Uly/SAX y h 52 m 12 s +43° 01'2.5'SAX/WFCyyy h 04 m 15 s +51° 46'3'*10'Uly/Ko/NEyyy h 25 m 21 s +20° 05'4'*8'Uly/KO/NE yy C16 h 20 m 22 s +29° 25'6'*8'ASM/Uly yy h 13 m 33 s -51° 56'3.5'*16'Uly/KO/NE y h 33 m 55 s +46° 26'14*1'Uly/KO/NE yy h 31 m 50 s -73° 24'2'SAX/WFC yn h 09 m 32 s -72° 09'6'SAX/WFCyyn h 38 m 06 s -80° 30'3'SAX/WFCyyy h 54 m 41 s -26° 45'7'BAT/PCAy y h 25 m 29 s +44° 45'2'SAX/WFCyyy h 59 m 07 s +08° 35.6'4'RXTE/ASMyyy h 17 m 46 s +71° 29.9'4'SAX/WFCyyn h 34 m 54 s -52° 49.9'8'SAX/WFCySNy h 56 m 30 s +65° 12.0'4'SAX/WFCyyn h 08 m 29 s +59° 18.0'2.5'*1'RXTE/ASMyny h 53 m 28 s +79° 17.4'3'SAX/WFCyyy h 01 m 57 s +11° 46.4'3'SAX/WFCyyn0.695

Introduction RedshiftFWHM (Ǻ)References GRB Kulkarni et al., 1999 GRB Vreeswijk, et al., 2001 GRB Castro et al., 2001 GRB / 4.8 / 3.3–5.8 Jha et al., 2001 Masetti et al 2001 Salamanca et al., 2001

GRB z GRB = m V  20.2 Introduction (Masetti et al., 2001)

Introduction GRB z GRB = (Castro et al., 2001)

Introduction GRB z GRB = N HI  2  cm –2 (Fynbo et al., 2001)

Introduction Ly  N HI =2.3x10²º cmˉ ² 5” Z QSO = 1.41 Wavelength (Å) QSO Damped Lyman Alpha (DLA) systems QSO EX z DLA = 1.01 m V  16.4 (Le Brun et al., 1998)

[X/H] = log (N Xi /N HI )– log (X/H) (Pettini et al., 2000)  Ion log N [X/H] HI20.67±0.03 …. ZnII12.33±0.11– 0.99±0.11 SiII15.45±0.11– 0.77±0.11 CrII13.49±0.04– 0.89±0.05 FeII15.17±0.04– 1.01±0.05 MnII12.91±0.04– 1.15±0.05 Introduction

Metallicity redshift evolution QSO DLAs (Savaglio, 2000)

QSO–DLA z = FWHM = 7 km s –1 GRB–DLA z GRB = FWHM = 200 – 400 km s –1 velocity (km s –1 ) GRB–DLAs and QSO–DLAs

1.4 minutes 14.4 minutes 2.4 hours (Fruchter et al., 1999) GRB z GRB = GRB–DLAs and QSO–DLAs

760 km s –1 (Castro et al., 2001) GRB z GRB = Keck/ESI FWHM  80 km s –1 GRB–DLAs and QSO–DLAs

Heavy element column densities in GRB–DLAs Equivalent Widths of absorption lines

Heavy element column densities in GRB–DLAs Curve of growth (Spitzer, 1978) Linear part: log W r / = log (N f ) – 4.053

Heavy element column densities in GRB–DLAs

Curve of growth (Spitzer, 1978)

Heavy element column densities in GRB–DLAs

Comparison with QSO–DLAs

Heavy element column densities in GRB–DLAs Comparison with QSO–DLAs

Heavy element abundances in GRB–DLAs Relative abundances and comparison with QSO–DLAs

Heavy element abundances in GRB–DLAs Relative abundances and comparison with QSO–DLAs

Heavy element abundances in GRB–DLAs Relative abundances and comparison with QSO–DLAs

Heavy element abundances in GRB–DLAs Relative abundances and comparison with QSO–DLAs

Dust depletion correction Heavy element abundances in the Galactic ISM (Savage & Sembach 1996)

Dust depletion correction (Savaglio 2000)

Dust depletion correction GRB

Dust depletion correction GRB GRB

Dust extinction Optical extinction in solar neighborhood

Dust extinction Optical extinction in solar neighborhood

Dust extinction A V GRB GRB GRB

Dust extinction GRB z GRB = (Fynbo et al., 2001) U K A V =0.27  0.12 A V =0.18  0.06

Dust extinction Grey dust extinction in Active Nuclei (Maiolino, Marconi & Oliva, 2001)

Dust extinction (Fruchter, Krolik & Rohads, 2001) Large dust grains might be destroyed first

Absorption lines in 3 GRB –DLAs indicate column densities of metals are larger than in QSO–DLAs [Fe/Zn] indicates high dust depletion Low observed reddening in GRBs can be explained if grey extinction is assumed High extinction might party explain low fraction (30 – 35 %) of optical GRB afterglow detections This talk URL: Conclusions