Heavy elements and reddening in Gamma Ray Bursts Sandra Savaglio Johns Hopkins University In collaboration with Mike Fall (STScI) & Fabrizio Fiore (Rome Obs)
Heavy elements and reddening in Gamma Ray Bursts Sandra Savaglio Johns Hopkins University In collaboration with Mike Fall (STScI) & Fabrizio Fiore (Rome Obs) Optical spectra of GRB afterglows GRB–DLAs vs. QSO–DLAs Heavy elements and dust Outline
Heavy elements and reddening in Gamma Ray Bursts Acknowledgements Daniela Calzetti – STScI Fiona Harrison – CalTech Tim Heckman – JHU Julian Krolik – JHU Nicola Masetti – CNR, Bologna Eliana Palazzi – CNR Bologna Nino Panagia – STScI James Rhoads – STScI Ken Sembach – STScI
Introduction GRBGRB X-ray positionErrorInstrumentX-ray AfterglowOptical TransientRadio Afterglowz h 58 m 10 s -31° 23'15'*5'Uly/MO/SAX yy h 15 m 16 s -21° 56'1'SAX/WFCyy h 34 m 25 s -76° 02'2'SAX/WFCyyy h 55 m 35 s +40° 56'20*15'HE/Uly/SAX y h 52 m 12 s +43° 01'2.5'SAX/WFCyyy h 04 m 15 s +51° 46'3'*10'Uly/Ko/NEyyy h 25 m 21 s +20° 05'4'*8'Uly/KO/NE yy C16 h 20 m 22 s +29° 25'6'*8'ASM/Uly yy h 13 m 33 s -51° 56'3.5'*16'Uly/KO/NE y h 33 m 55 s +46° 26'14*1'Uly/KO/NE yy h 31 m 50 s -73° 24'2'SAX/WFC yn h 09 m 32 s -72° 09'6'SAX/WFCyyn h 38 m 06 s -80° 30'3'SAX/WFCyyy h 54 m 41 s -26° 45'7'BAT/PCAy y h 25 m 29 s +44° 45'2'SAX/WFCyyy h 59 m 07 s +08° 35.6'4'RXTE/ASMyyy h 17 m 46 s +71° 29.9'4'SAX/WFCyyn h 34 m 54 s -52° 49.9'8'SAX/WFCySNy h 56 m 30 s +65° 12.0'4'SAX/WFCyyn h 08 m 29 s +59° 18.0'2.5'*1'RXTE/ASMyny h 53 m 28 s +79° 17.4'3'SAX/WFCyyy h 01 m 57 s +11° 46.4'3'SAX/WFCyyn0.695 This list URL: ˜ jcg/grbgen.html
Introduction GRBs vs. QSOs redshift distribution
Introduction 0.5 days m R = days m R = days m R =20.65 GRB z GRB =1.475 (Vreeswijk et al., 2001)
Introduction This list URL: ˜ jcg/grbgen.html GRBGRB X-ray positionErrorInstrumentX-ray AfterglowOptical TransientRadio Afterglowz h 58 m 10 s -31° 23'15'*5'Uly/MO/SAX yy h 15 m 16 s -21° 56'1'SAX/WFCyy h 34 m 25 s -76° 02'2'SAX/WFCyyy h 55 m 35 s +40° 56'20*15'HE/Uly/SAX y h 52 m 12 s +43° 01'2.5'SAX/WFCyyy h 04 m 15 s +51° 46'3'*10'Uly/Ko/NEyyy h 25 m 21 s +20° 05'4'*8'Uly/KO/NE yy C16 h 20 m 22 s +29° 25'6'*8'ASM/Uly yy h 13 m 33 s -51° 56'3.5'*16'Uly/KO/NE y h 33 m 55 s +46° 26'14*1'Uly/KO/NE yy h 31 m 50 s -73° 24'2'SAX/WFC yn h 09 m 32 s -72° 09'6'SAX/WFCyyn h 38 m 06 s -80° 30'3'SAX/WFCyyy h 54 m 41 s -26° 45'7'BAT/PCAy y h 25 m 29 s +44° 45'2'SAX/WFCyyy h 59 m 07 s +08° 35.6'4'RXTE/ASMyyy h 17 m 46 s +71° 29.9'4'SAX/WFCyyn h 34 m 54 s -52° 49.9'8'SAX/WFCySNy h 56 m 30 s +65° 12.0'4'SAX/WFCyyn h 08 m 29 s +59° 18.0'2.5'*1'RXTE/ASMyny h 53 m 28 s +79° 17.4'3'SAX/WFCyyy h 01 m 57 s +11° 46.4'3'SAX/WFCyyn0.695
Introduction RedshiftFWHM (Ǻ)References GRB Kulkarni et al., 1999 GRB Vreeswijk, et al., 2001 GRB Castro et al., 2001 GRB / 4.8 / 3.3–5.8 Jha et al., 2001 Masetti et al 2001 Salamanca et al., 2001
GRB z GRB = m V 20.2 Introduction (Masetti et al., 2001)
Introduction GRB z GRB = (Castro et al., 2001)
Introduction GRB z GRB = N HI 2 cm –2 (Fynbo et al., 2001)
Introduction Ly N HI =2.3x10²º cmˉ ² 5” Z QSO = 1.41 Wavelength (Å) QSO Damped Lyman Alpha (DLA) systems QSO EX z DLA = 1.01 m V 16.4 (Le Brun et al., 1998)
[X/H] = log (N Xi /N HI )– log (X/H) (Pettini et al., 2000) Ion log N [X/H] HI20.67±0.03 …. ZnII12.33±0.11– 0.99±0.11 SiII15.45±0.11– 0.77±0.11 CrII13.49±0.04– 0.89±0.05 FeII15.17±0.04– 1.01±0.05 MnII12.91±0.04– 1.15±0.05 Introduction
Metallicity redshift evolution QSO DLAs (Savaglio, 2000)
QSO–DLA z = FWHM = 7 km s –1 GRB–DLA z GRB = FWHM = 200 – 400 km s –1 velocity (km s –1 ) GRB–DLAs and QSO–DLAs
1.4 minutes 14.4 minutes 2.4 hours (Fruchter et al., 1999) GRB z GRB = GRB–DLAs and QSO–DLAs
760 km s –1 (Castro et al., 2001) GRB z GRB = Keck/ESI FWHM 80 km s –1 GRB–DLAs and QSO–DLAs
Heavy element column densities in GRB–DLAs Equivalent Widths of absorption lines
Heavy element column densities in GRB–DLAs Curve of growth (Spitzer, 1978) Linear part: log W r / = log (N f ) – 4.053
Heavy element column densities in GRB–DLAs
Curve of growth (Spitzer, 1978)
Heavy element column densities in GRB–DLAs
Comparison with QSO–DLAs
Heavy element column densities in GRB–DLAs Comparison with QSO–DLAs
Heavy element abundances in GRB–DLAs Relative abundances and comparison with QSO–DLAs
Heavy element abundances in GRB–DLAs Relative abundances and comparison with QSO–DLAs
Heavy element abundances in GRB–DLAs Relative abundances and comparison with QSO–DLAs
Heavy element abundances in GRB–DLAs Relative abundances and comparison with QSO–DLAs
Dust depletion correction Heavy element abundances in the Galactic ISM (Savage & Sembach 1996)
Dust depletion correction (Savaglio 2000)
Dust depletion correction GRB
Dust depletion correction GRB GRB
Dust extinction Optical extinction in solar neighborhood
Dust extinction Optical extinction in solar neighborhood
Dust extinction A V GRB GRB GRB
Dust extinction GRB z GRB = (Fynbo et al., 2001) U K A V =0.27 0.12 A V =0.18 0.06
Dust extinction Grey dust extinction in Active Nuclei (Maiolino, Marconi & Oliva, 2001)
Dust extinction (Fruchter, Krolik & Rohads, 2001) Large dust grains might be destroyed first
Absorption lines in 3 GRB –DLAs indicate column densities of metals are larger than in QSO–DLAs [Fe/Zn] indicates high dust depletion Low observed reddening in GRBs can be explained if grey extinction is assumed High extinction might party explain low fraction (30 – 35 %) of optical GRB afterglow detections This talk URL: Conclusions