Beam Monitoring from Beam Strahlung new work by summer students  Magdalena Luz (HU)  Regina Kwee (HU) Achim Stahl DESY Zeuthen 10.Oct.2003 LumiCal BeamCal.

Slides:



Advertisements
Similar presentations
Beam-Beam Effects for FCC-ee at Different Energies: at Different Energies: Crab Waist vs. Head-on Dmitry Shatilov BINP, Novosibirsk FCC-ee/TLEP physics.
Advertisements

K. Buesser & N. Walker TF Studies: A very first look.
GUINEA-PIG: A tool for beam-beam effect study C. Rimbault, LAL Orsay Daresbury, April 2006.
ECFA-DESY workshop, NIKEF 1 st April, 2003Nick Walker, DESY Energy Spread Measurement in the TESLA Extraction Line Nick Walker - DESY.
TESLA R&D: LCAL/LAT Achim Stahl DESY Zeuthen Cracow Tel Aviv Minsk Prague Colorado Protvino UCL London Dubna.
P hysics background for luminosity calorimeter at ILC I. Božović-Jelisavčić 1, V. Borka 1, W. Lohmann 2, H. Nowak 2 1 INN VINČA, Belgrade 2 DESY, Hamburg.
MERLIN 3.0 only considers first order (dipole) modes. Kick is linearly proportional to offset. For offsets close to the axis this is a reasonable approximation.
Pair backgrounds for different crossing angles Machine-Detector Interface at the ILC SLAC 6th January 2005 Karsten Büßer.
Reconstruction of IP Beam Parameters at the ILC from Beamstrahlung Glen White SLAC/QMUL May 4 th 2005.
July 22, 2005Modeling1 Modeling CESR-c D. Rubin. July 22, 2005Modeling2 Simulation Comparison of simulation results with measurements Simulated Dependence.
The Detector and Interaction Region for a Photon Collider at TESLA
Beamdiagnostics by Beamstrahlung Analysis C.Grah ILC ECFA 2006 Valencia, 9 th November 2006.
August 2005Snowmass Workshop IP Instrumentation Wolfgang Lohmann, DESY Measurement of: Luminosity (precise and fast) Energy Polarisation.
August 2005Snowmass Workshop Instrumentation of the Very Forward Region of a Linear Collider Detector Wolfgang Lohmann, DESY.
Karsten Büßer Beam Induced Backgrounds at TESLA for Different Mask Geometries with and w/o a 2*10 mrad Crossing Angle HH-Zeuthen-LC-Meeting Zeuthen September.
NEW COMMENTS TO ILC BEAM ENERGY MEASUREMENTS BASED ON SYNCHROTRON RADIATION FROM MAGNETIC SPECTROMETER E.Syresin, B. Zalikhanov-DLNP, JINR R. Makarov-MSU.
Ronen Ingbir Collaboration High precision design Tel Aviv University HEP Experimental Group Krakow2006.
Ronen Ingbir Collaboration High precision design Tel Aviv University HEP Experimental Group Cambridge ILC software tools meeting.
Karsten Büßer Beam Induced Backgrounds at TESLA for Different Mask Geometries with and w/o a 2*10 mrad Crossing Angle LCWS 2004 Paris April 19 th 2004.
BeamCal Simulations with Mokka Madalina Stanescu-Bellu West University Timisoara, Romania Desy, Zeuthen 30 Jun 2009 – FCAL Meeting.
Luminosity Monitoring and Beam Diagnostics FCAL Collaboration Workshop TAU, September 18-19, 2005 Christian Grah.
Analysis of Beamstrahlung Pairs ECFA Workshop Vienna, November 14-17, 2005 Christian Grah.
March 2004LCWS Stanford Instrumentation of the Very Forward Region of a Linear Collider Detector Wolfgang Lohmann, DESY.
Beam Monitoring from Beam Strahlung work by summer students  Gunnar Klämke (U Jena, 01)  Marko Ternick (TU Cottbus, 02)  Magdalena Luz (HU Berlin, 03)
ILC Meeting Vancouver July What Does Beam-strahlung Tell Us? William Morse - BNL.
2. December 2005Valencia Workshop Very Forward Region Instrumentation Wolfgang Lohmann, DESY Basic functions: - Hermeticity to small polar angles - Fast.
Simulation of Beam-Beam Background at CLIC André Sailer (CERN-PH-LCD, HU Berlin) LCWS2010: BDS+MDI Joint Session 29 March, 2010, Beijing 1.
Karsten Büßer Instrumentation of the Forward Region of the TESLA Detector International Europhysics Conference on High Energy Physics Aachen, July 19th.
Beam-Beam Background and the Forward Region at a CLIC Detector André Sailer (CERN PH-LCD) LC Physics School, Ambleside 22st August, 2009.
Fast Beam Diagnostics at the ILC Using the Beam Calorimeter Christian Grah, Desy FCAL Workshop February Cracow.
Implementation and study of depolarizing effects in GUINEA-PIG++ beam-beam interaction simulation Advanced QED Methods for Future Accelerators 3 rd -4.
TESLA R&D: Forward Region Achim Stahl DESY Zeuthen Cracow Tel Aviv Minsk Prague Colorado Protvino UC London Dubna.
ILC-GDE Meeting Beijing Feb Effect of MDI Design on BDS Collimation Depth Frank Jackson ASTeC Daresbury Laboratory Cockcroft Institute.
ILC EXTRACTION LINE TRACKING Y. Nosochkov, E. Marin September 10, 2013.
1 Calorimeters of the Very Forward Region Iftach Sadeh Tel Aviv University DESY Collaboration High precision design March 5 th 2008.
W. Morse GamCal1 GamCal: a Beam-strahlung Gamma Detector for Beam Diagnostics William M. Morse Brookhaven National Lab.
16 February 2009CLIC Physics & Detectors Konrad Elsener 1... some issues regarding the forward region... (“picking up” from Lucie Linssen, 29 Sept 2008)
The Very Forward Region of the ILC Detectors Ch. Grah FCAL Collaboration TILC 2008, Sendai 04/03/2008.
Systematic limitations to luminosity determination in the LumiCal acceptance from beam-beam effects C. Rimbault, LAL Orsay LCWS06, Bangalore, 9-13 March.
Fast and Precise Luminosity Measurement at the ILC Ch.Grah LCWS 2006 Bangalore.
Beamdiagnostics using BeamCal C.Grah FCAL Workshop, Paris,
LumiCal background and systematics at CLIC energy I. Smiljanić, Vinča Institute of Nuclear Sciences.
Michael Röhrs On-crest slice emittance measurements Michael Roehrs.
Performance Study of Pair-monitor 2009/06/30 Yutaro Sato Tohoku Univ.
1 Impact de l’effet faisceau-faisceau sur la precision de la mesure de la luminosité à l’ILC Cécile Rimbault, LAL Orsay SOCLE,19-20 Novembre 2007, Clermont-Ferrand.
Very Forward Instrumentation: BeamCal Ch. Grah FCAL Collaboration ILD Workshop, Zeuthen Tuesday 15/01/2008.
ILC BDS Commissioning Glen White, SLAC AWLC 2014, Fermilab May 14 th 2014.
8 th February 2006 Freddy Poirier ILC-LET workshop 1 Freddy Poirier DESY ILC-LET Workshop Dispersion Free Steering in the ILC using MERLIN.
FCAL Takashi Maruyama SLAC SiD Workshop, 15 – 17 November, 2010, Eugene, Oregon.
Polarization of final electrons/positrons during multiple Compton
ILC BDS Alignment, Tuning and Feedback Studies
Benchmarking MAD, SAD and PLACET Characterization and performance of the CLIC Beam Delivery System with MAD, SAD and PLACET T. Asaka† and J. Resta López‡
For Discussion Possible Beam Dynamics Issues in ILC downstream of Damping Ring LCWS2015 K. Kubo.
Summary of the FCAL Workshop Cracow, February 12-13
The very forward region Tel-Aviv meeting summary
Large Booster and Collider Ring
Other beam-induced background at the IP
Reconstruction of IP Beam Parameters at the ILC from Beamstrahlung
Wolfgang Lohmann DESY (Zeuthen)
Optimization of the Luminosity using Beamstrahlung Photons
Interaction Region Design Options e+e- Factories Workshop
Beamdiagnostics by Beamstrahlung Pair Analysis
Study of e+ e- background due to beamstrahlung for different ILC parameter sets Stephan Gronenborn.
Beam-Beam Effects in the CEPC
The Very Forward Region of the ILC Detectors
Beam-Beam Effects in High-Energy Colliders:
Start-to-End Simulations for the TESLA LC
Simulation check of main parameters (wd )
The Effects of Beam Dynamics on CLIC Physics Potential
CLIC luminosity monitoring/re-tuning using beamstrahlung ?
Presentation transcript:

Beam Monitoring from Beam Strahlung new work by summer students  Magdalena Luz (HU)  Regina Kwee (HU) Achim Stahl DESY Zeuthen 10.Oct.2003 LumiCal BeamCal

Beam Strahlung TESLA: small bunches (5nm x 550nm x 300μm) huge electric/magnetic fields

Beam Strahlung Particles accelerated by electric field  creation of photon radiation (beamstrahlung) Simulation of collisions by guinea-pig

Beam Strahlung Creation of e + e - pairs by photon-photon interactions (2 nd order effect, e + e - <<  s) Simulation of collisions by guinea-pig

Beam Strahlung Tracking of particles into the forward region (e + e - confined by magnetic field of detector) Tracking by simple stand-alone program

Beam Strahlung Creation of signals in detectors (LCal + Collimators?)  fast diagnosis + offline analysis Over-simplified detector simulation detectors subdivided into cells sum energy impact on cells 3 potential sources of information energy-distribution of pairs number-distribution of pairs distribution of photons

Current Analysis Concept Beam Parameters determine collision creation of beamstr. creation of e + e - pairs guinea-pig Observables characterize energy distributions in detectors analysis program 1 st order Taylor-Exp. Observables Δ BeamPar Taylor Matrix nom = + * Solve by matrix inversion (Moore-Penrose Inverse)

Example: Observables  total energy  first radial moment  direction of thrust axis  thrust value  (A + D) – (B + C)  (A + B) – (C + D)  (A + C) – (B + D) A BC D

Example: Slopes beam parameter i observable j 1 point = 1 bunch crossing by guinea-pig parametrization (polynomial) slope at nom. value  taylor coefficient i,j

Analysis Problems I at nominal value  simulate 10 bunch crossings  calculate spread assume same error for all points

((A+C) – (B+D)) / total energy Analysis Problems II bunch rotation in mrad total energy slope = 0 at nom. Parameter linear approximation fails true for all observables  analysis fails

1 st Results: Single Parameter Analysis nominal our precisionBeam Diag. Bunch width x Ave. Diff. 553 nm 1.2 nm 2.8 nm ~ 10 % Bunch width y Ave. Diff. 5.0 nm 0.1 nm Shintake Monitor Bunch length z Ave. Diff. 300 μm 4.3 μm 2.6 μm ~ 10 % Emittance in x Ave. Diff mm mrad 1.0 mm mrad 0.4 mm mrad ? Emittance in y Ave. Diff mm mrad0.001 mm mrad ? Beam offset in x Beam offset in y 0 7 nm 0.2 nm 5 nm 0.1 nm Horizontal waist shift Vertical waist shift 0 μm 360 μm 80 μm 20 μm None

1 st Results: Two Parameter Analysis Example: vertical waist shift Sngl Param Reso: 20 μm

Next Steps:  Fix analysis problems  6-parameter fit  Test on realistic beam simulation  approach machine people New Directions:  What can we learn from the photons ?  Think about hardware implementation  Any consequences on detector design ?

First Look at Photons

nominal setting (550 nm x 5 nm) σ x = 650 nmσ y = 3 nm

Next Steps:  Fix analysis problems  6-parameter fit  Test on realistic beam simulation New Directions:  What can we learn from the photons ?  Think about hardware implementation  Any consequences on detector design ?