Content Addressable Memories

Slides:



Advertisements
Similar presentations
Semiconductor Memory Design. Organization of Memory Systems Driven only from outside Data flow in and out A cell is accessed for reading by selecting.
Advertisements

Robust Low Power VLSI R obust L ow P ower VLSI Sub-threshold Sense Amplifier (SA) Compensation Using Auto-zeroing Circuitry 01/21/2014 Peter Beshay Department.
5-1 Memory System. Logical Memory Map. Each location size is one byte (Byte Addressable) Logical Memory Map. Each location size is one byte (Byte Addressable)
Sistemi Elettronici Programmabili1 Progettazione di circuiti e sistemi VLSI Anno Accademico Lezione Memorie (vedi anche i file pcs1_memorie.pdf.
Fall 06, Sep 19, 21 ELEC / Lecture 6 1 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.
SRAM Mohammad Sharifkhani. Effect of Mismatch.
11/29/2004EE 42 fall 2004 lecture 371 Lecture #37: Memory Last lecture: –Transmission line equations –Reflections and termination –High frequency measurements.
Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 10 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.
Introduction to CMOS VLSI Design SRAM/DRAM
Digital Integrated Circuits© Prentice Hall 1995 Memory SEMICONDUCTOR MEMORIES.
Spring 07, Feb 27 ELEC 7770: Advanced VLSI Design (Agrawal) 1 ELEC 7770 Advanced VLSI Design Spring 2007 Power Consumption in a Memory Vishwani D. Agrawal.
Die-Hard SRAM Design Using Per-Column Timing Tracking
Low-Power CMOS SRAM By: Tony Lugo Nhan Tran Adviser: Dr. David Parent.
Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 13 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Pseudo-nMOS, Dynamic CMOS and Domino.
Modern VLSI Design 2e: Chapter 6 Copyright  1998 Prentice Hall PTR Topics n Memories: –ROM; –SRAM; –DRAM. n PLAs.
Parts from Lecture 9: SRAM Parts from
Low Voltage Low Power Dram
Digital Integrated Circuits for Communication
Phase Locked Loops Continued
1 EE 587 SoC Design & Test Partha Pande School of EECS Washington State University
55:035 Computer Architecture and Organization
Semiconductor Memories Lecture 1: May 10, 2006 EE Summer Camp Abhinav Agarwal.
Design of Robust, Energy-Efficient Full Adders for Deep-Submicrometer Design Using Hybrid-CMOS Logic Style Sumeer Goel, Ashok Kumar, and Magdy A. Bayoumi.
ENGG 6090 Topic Review1 How to reduce the power dissipation? Switching Activity Switched Capacitance Voltage Scaling.
EE415 VLSI Design DYNAMIC LOGIC [Adapted from Rabaey’s Digital Integrated Circuits, ©2002, J. Rabaey et al.]
Review: Basic Building Blocks  Datapath l Execution units -Adder, multiplier, divider, shifter, etc. l Register file and pipeline registers l Multiplexers,
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 28: November 16, 2012 Memory Periphery.
1 EE 587 SoC Design & Test Partha Pande School of EECS Washington State University
Semiconductor Memories.  Semiconductor memory is an electronic data storage device, often used as computer memory, implemented on a semiconductor-based.
1 Review Of “A 125 MHz Burst-Mode Flexible Read While Write 256Mbit 2b/c 1.8V NOR Flash Memory” Adopted From: “ISSCC 2005 / SESSION 2 / NON-VOLATILE MEMORY.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 27: November 14, 2011 Memory Core.
Memory Semiconductor Memory Classification ETEG 431 SG Size: Bits, Bytes, Words. Timing Parameter: Read, Write Cycle… Function: ROM, RWM, Volatile, Static,
Digital Design: Principles and Practices
CPEN Digital System Design
Digital Logic Design Instructor: Kasım Sinan YILDIRIM
CSE477 L24 RAM Cores.1Irwin&Vijay, PSU, 2002 CSE477 VLSI Digital Circuits Fall 2002 Lecture 24: RAM Cores Mary Jane Irwin ( )
XIAOYU HU AANCHAL GUPTA Multi Threshold Technique for High Speed and Low Power Consumption CMOS Circuits.
CSE477 L23 Memories.1Irwin&Vijay, PSU, 2002 CSE477 VLSI Digital Circuits Fall 2002 Lecture 23: Semiconductor Memories Mary Jane Irwin (
Class 09 Content Addressable Memories Cell Design and Peripheral Circuits.
Computer Memory Storage Decoding Addressing 1. Memories We've Seen SIMM = Single Inline Memory Module DIMM = Dual IMM SODIMM = Small Outline DIMM RAM.
Project SRAM Stevo Bailey Kevin Linger Roger Lorenzo John Thompson ECE 4332: Intro to VLSI.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 28: November 16, 2011 Memory Periphery.
Washington State University
CMPEN 411 VLSI Digital Circuits Spring 2009 Lecture 22: Memery, ROM
Weak SRAM Cell Fault Model and a DFT Technique Mohammad Sharifkhani, with special thanks to Andrei Pavlov University of Waterloo.
CMPEN 411 VLSI Digital Circuits Spring 2009 Lecture 24: Peripheral Memory Circuits [Adapted from Rabaey’s Digital Integrated Circuits, Second Edition,
Introduction to Computer Organization and Architecture Lecture 7 By Juthawut Chantharamalee wut_cha/home.htm.
Dynamic Memory Cell Wordline
Dynamic Logic Circuits Static logic circuits allow implementation of logic functions based on steady state behavior of simple nMOS or CMOS structures.
EE 466/586 VLSI Design Partha Pande School of EECS Washington State University
Digital Circuits Introduction Memory information storage a collection of cells store binary information RAM – Random-Access Memory read operation.
Seok-jae, Lee VLSI Signal Processing Lab. Korea University
Dynamic Logic.
EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Dynamic CMOS LogicDynamic CMOS Logic V1.0 5/4/2003.
Sp09 CMPEN 411 L21 S.1 CMPEN 411 VLSI Digital Circuits Spring 2009 Lecture 21: Shifters, Decoders, Muxes [Adapted from Rabaey’s Digital Integrated Circuits,
Low Power SRAM VLSI Final Presentation Stephen Durant Ryan Kruba Matt Restivo Voravit Vorapitat.
CSE477 L25 Memory Peripheral.1Irwin&Vijay, PSU, 2003 CSE477 VLSI Digital Circuits Fall 2003 Lecture 25: Peripheral Memory Circuits Mary Jane Irwin (
April 22, Bit-Line Leakage Cancellation: Design and Test Automation Sudhanshu Khanna.
FPGA IMPLEMENTATION OF TCAM Under the guidance of Dr. Hraziia Presented By Malvika ( ) Department of Electronics and Communication Engineering.
YASHWANT SINGH, D. BOOLCHANDANI
Full Custom Associative Memory Core
Mary Jane Irwin ( ) CSE477 VLSI Digital Circuits Fall 2002 Lecture 25: Peripheral Memory Circuits Mary Jane.
MOS Memory and Storage Circuits
Day 29: November 18, 2011 Dynamic Logic
Hakim Weatherspoon CS 3410 Computer Science Cornell University
Information Storage and Spintronics 10
Semiconductor Memories
Electronics for Physicists
Jason Klaus, Duncan Elliott Confidential
FIGURE 7-1 Block Diagram of Memory
Presentation transcript:

Content Addressable Memories Cell Design and Peripheral Circuits

CAM: Introduction CAM vs. RAM Data In Address In Address Out Data Out 1 Data In 1 5 4 3 2 4 Address In 1 5 4 3 2 3 Address Out 1 1 1 Data Out

CAM: Introduction Binary CAM Cell ML pre-charged to VDD Match: ML remains at VDD Mismatch: ML discharges BL1c BL1 WL SL1c SL1 ML BL1c_cell BL1_cell P1 P2 N1 N2 N3 N4 N5 N7 N6 N8

CAM: Introduction Ternary CAM (TCAM) X 1 Input Keyword 1 Input Keyword 1 Input Keyword 1 Input Keyword X 1 5 4 3 2 X 1 5 4 3 2 1 4 Match 1 4 Match 1 1 1 1

CAM: Introduction TCAM Cell Global Masking  SLs Local Masking  BLs ML BL1c BL2c Comparison Logic TCAM Cell Global Masking  SLs Local Masking  BLs BL1 BL2 Logic 1 X N.A. BL1 BL2 WL RAM Cell

CAM: Introduction DRAM based TCAM Cell Higher bit density Slower table update Expensive process Refreshing circuitry Scaling issues (Leakage) BL2 BL1 WL SL2 SL1 ML BL2_cell BL1_cell N3 N4 N5 N7 N6 N8

CAM: Introduction SRAM based TCAM Cell Standard CMOS process Fast table update Large area (16T) BL1 BL1c BL2 BL2c WL SL1 SL2 ML BL1c_cell BL2c_cell

CAM: Introduction Block diagram of a 256 x 144 TCAM Search Lines (SLs) CAM Cell (0) BL1c(0) BL2c(0) CAM Cell (143) BL1c(N) BL2c(N) ML0 SL1(143) SL2(143) SL1(0) SL2(0) MLSA MLSO(0) ML255 MLSO(255) SL Drivers Search Lines (SLs) ML Sense Amplifiers Match Lines (MLs)

CAM: Introduction Why low-power TCAMs? Parallel search  Very high power (2Mb Sibercore TCAM 66MHz 66Msps  3.4W) IPv6, OC-768  Larger word size, larger no. of entries  High power Embedded applications (SoC)

CAM: Introduction Why high-performance TCAMs? OC-768  135M packets/s (7.4 ns/packet) Application complexity  Multiple searches IPv6  Larger word size  larger search time

CAM: Design Techniques Cell Design: 12T Static TCAM cell* ‘0’ is retained by Leakage (VWL ~ 200 mV) High density Leakage (3 orders) Noise margin Soft-errors (node S) Unsuitable for READ * I. Arsovski, T. Chandler, A. Sheikholeslami, IEEE JSSC, vol. 38, no. 1, pp. 155-158, Jan. 2003

CAM: Design Techniques Cell Design: NAND vs. NOR Type CAM Low Power Charge-sharing Slow CAM Cell (N) CAM Cell (1) CAM Cell (0) SA ML_NAND M BL1 BL1c WL SL1 SL1c VDD NAND-type CAM NOR-type CAM SA CAM Cell (N) CAM Cell (1) CAM Cell (0) ML_NOR MM

CAM: Design Techniques MLSA Design: Conventional Pre-charge ML to VDD Match  VML = VDD Mismatch  VML = 0 MM VDD PRE MLSO ML

CAM: Design Techniques MLSA Design: Current Race Sensing* RST VDD RSTc ML MLSO MLOFF MATCH MM Dummy ML MLOFF Delay * I. Arsovski, T. Chandler, A. Sheikholeslami, IEEE JSSC, vol. 38, no. 1, pp. 155-158, Jan. 2003

CAM: Design Techniques MLSA Design: Current Race Sensing No need to reset SLs in every clock cycle Lower ML voltage swing (Vth + ∆V) ≈ ½VDD Speed   Current   Voltage Margin  Voltage Margin ML [0] MLSO [0] ML [1]

CAM: Design Techniques MLSA Design: Charge Redistribution* Fast pre-charge ML through MREF Mismatch  SP=‘0’  MLSO=‘1’ IML > IREF > leakage ∆VML  (VREF – Vth) FAST_PRE  High power FAST_PRE RST VREF VDD SP MLSO IREF ML CML CSP MREF * P. Vlasenko, D. Perry, MOSAID Technologies Inc., US Patent 6717876, April 6, 2004

CAM: Design Techniques MLSA Design: Charge Injection* Reset ML and pre-charge CINJ Charge share CINJ and CML Match  VML = CINJ x VDD/(CINJ +CML) Mismatch  VML = 0 Small ∆VML Poor noise margin Area penalty (CINJ) VDD ML MLSO CML OFFSET SA CHARGE_IN PRE CINJ RST * G. Kasai, Y. Takarabe, K. Furumi, and M. Yoneda, SONY Corp., Proc. IEEE CICC, pp. 387-390, Sep. 2003

CAM: Design Techniques Low Power: Selective Pre-charge* MLs: Two segments If MATCH in pre-search  Main-search No. of bits in pre-search  Data statistics ML1 ML2 MLSA1 MLSO1 MLSA2 MLSO2 PRE-SEARCH MAIN-SEARCH * C. Zukowski and S. Wang, Proc. IEEE ISCAS, pp. 745-770, Jun. 9-12, 1997

CAM: Design Techniques Low Power: Dual-ML TCAM* MLSA1 is enabled first MLSA2 is enabled if MLSO1 = ‘1’ CAM Cell (0) BL1c(0) BL2c(0) CAM Cell (N) BL1c(N) BL2c(N) ML1 SL1(N) SL2(N) SL1(0) SL2(0) MLSA1 MLSO1 ML2 MLSA2 MLSO2 * N. Mohan, M. Sachdev, Proc. IEEE ISCAS, pp. 633-636, May 23-26, 2004

CAM: Design Techniques Low Power: Dual-ML TCAM Cap(ML1) = Cap(ML2) = ½ C(ML) Same speed, 50% less energy (Ideally!) Parasitic interconnects degrade both speed and energy Additional ML increases coupling capacitance

CAM: Design Techniques Low Power: Dual-ML TCAM Simulation results (144 bits)* Interconnect cap. = 27 fF W/L = 0.6µm/0.18µm Old New Difference TS (ns) 8.14 8.46 4%  E1 (fJ) 769 426 45%  E2 (fJ) 973 26%  * N. Mohan, M. Sachdev, Proc. IEEE ISCAS, pp. 633-636, May 23-26, 2004

CAM: Design Techniques Low Power: Dual-ML TCAM* EAVG = PML1 x E1 +(1 – PML1) x E2 SA1 cannot detect Type I For ‘M’ mismatches, PML1 = 1 – (0.5)M SL1 BL1c ML1 Mismatch SL1 SL2 BL1 BL2 Type I 1 Type II * N. Mohan, M. Sachdev, Proc. IEEE ISCAS, pp. 633-636, May 23-26, 2004

CAM: Design Techniques Low Power: Dual-ML TCAM* * N. Mohan, M. Sachdev, Proc. IEEE ISCAS, pp. 633-636, May 23-26, 2004

CAM: Design Techniques Low Power: Hierarchical SLs* 144 bits (5 segments: 8, 34, 34, 34, 34) SLs  Multiple blocks (64 words each) ∆VGSL  0.45V (VDD=1.8V) Logic complexity Search time/latency 64-bit OR gates * Pagiamtzis et. al., Proc. IEEE CICC, pp. 383-386, Sep. 2003

CAM: Design Techniques Static Power Reduction 16T TCAM: Leakage Paths* WL BL1 BL1c SL1 SL2 BL2 BL2c ML ‘1’ ‘0’ N1 N2 N3 N4 P1 P2 N5 N6 N7 N8 P3 P4 N12 N9 N11 N10 BL1c_cell BL2c_cell * N. Mohan, M. Sachdev, Proc. IEEE CCECE, pp. 711-714, May 2-5, 2004

CAM: Design Techniques Static Power Reduction Technology Scaling1 Dimensions 30%  Dynamic power 50%  Leakage current 5x  Architectural level techniques2, 3 A small portion is enabled S. Borkar, IEEE Micro, pp. 23-29, Jul.-Aug. 1999 K. Pagiamtzis, A. Sheikholeslami, Proc. IEEE CICC, pp. 383-386, Sep. 2003 G. Kasai, Y. Takarabe, K. Furumi, M. Yoneda, Proc. IEEE CICC, pp. 387-390, Sep. 2003

CAM: Design Techniques Static Power Reduction Leakage current* VDD   ISUB  VDD * R. X. Gu, M. I. Elmasry, IEEE JSSC, vol. 31, no. 5, pp. 707-713, May 1996

CAM: Design Techniques Static Power Reduction Side Effects of VDD Reduction in TCAM Cells Speed: No change Dynamic power: No change Robustness  VDD  Volt. Margin (Current-race sensing) Voltage Margin ML [0] MLSO [0] ML [1]

CAM: Design Techniques Static Power Reduction Voltage Margin of 144-bit TCAM word in 0.18 µm CMOS* * N. Mohan, M. Sachdev, Proc. IEEE CCECE, pp. 711-714, May 2-5, 2004

CAM: Design Techniques Static Power Reduction Effects of Technology Scaling* Berkeley predictive technology model (BPTM) * N. Mohan, M. Sachdev, Proc. IEEE CCECE, pp. 711-714, May 2-5, 2004