THz 1 Nanotechnology congress & Expo August 11-13, 2015 Frankfurt,

Slides:



Advertisements
Similar presentations
Femtosecond lasers István Robel
Advertisements

Classical behaviour of CW Optical Parametric Oscillators T. Coudreau Laboratoire Kastler Brossel, UMR CNRS 8552 et Université Pierre et Marie Curie, PARIS,
Ultrafast Experiments Hao Hu The University of Tennessee Department of Physics and Astronomy, Knoxville Course: Advanced Solid State Physics II (Spring.
Optical sources Lecture 5.
Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,
Nanophotonics Class 6 Microcavities. Optical Microcavities Vahala, Nature 424, 839 (2003) Microcavity characteristics: Quality factor Q, mode volume V.
COST Action MP0805 Meeting, Istanbul, April 12-13, 2010 University of Nottingham, UK Effects of Hydrogen Irradiation on Deep Levels in MBE Grown Dilute.
Controlling ac transport in carbon- based Fabry-Perot devices Claudia Gomes da Rocha University of Jyvaskyla, Finland Dresden University of Technology,
I.V. Iorsh, I.V. Shadrivov, P.A. Belov, and Yu.S. Kivshar Benasque, , 2013.
Wei E.I. Sha, Wallace C.H. Choy, and Weng Cho Chew
Perfect absorption, gain and high-directive super-Planckian thermal emission in asymmetric hyperbolic metamaterials Media, characterized by permittivity.
06/02/2008CCDs1 Charge Coupled Device M.Umar Javed M.Umar Javed.
EE243 Quantum Electronics Seminar Robb Walters Thomas J. Watson Laboratory of Applied Physics California Institute of Technology Topics in Terahertz Optics.
Absorption and emission processes
Ultrafast Spectroscopy
Microwave Spectroscopy I
Electron Scattering Length - Mean Free Path – le - Avg. distance between scattering Si - ~ 5nm; GaAs - ~ 100 nm Electrical Resistance is closely related.
Royal Holloway University of London
Prof. Juejun (JJ) Hu MSEG 667 Nanophotonics: Materials and Devices 9: Absorption & Emission Processes Prof. Juejun (JJ) Hu
Cyclotron Resonance and Faraday Rotation in infrared spectroscopy
LIGHT. Beam Show University of Southampton School of Physics and Astronomy  Light as a wave  Relativity  Quantum mechanics  Particle physics Light:
Metamaterial Emergence of novel material properties Ashida Lab Masahiro Yoshii PRL 103, (2009)
Ultrabroadband terahertz generation using DAST single crystal
Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier.
TeV Particle Astrophysics August 2006 Caltech Australian National University Universitat Hannover/AEI LIGO Scientific Collaboration MIT Corbitt, Goda,
Future Impacts Of Quantum Cascade Lasers On Spectroscopy
Physical Phenomena for TeraHertz Electronic Devices
Consider a time dependent electric field E(t) acting on a metal. Take the case when the wavelength of the field is large compared to the electron mean.
IR/THz Double Resonance Spectroscopy in the Pressure Broadened Regime: A Path Towards Atmospheric Gas Sensing Sree H. Srikantaiah Dane J. Phillips Frank.
How to achieve a homogeneous sensitivity in THz detector arrays
Ultrabroadband detection of THz radiation and the sensitivity estimation of photoconductive antenna Itoh lab Michitaka Bitoh H. Shimosato et al. Ultrafast.
Electromagnetic field radiated by a point emitter on a graphene sheet Alexey Nikitin Instituto de Ciencia de Materiales de Aragón (Universidad de Zaragoza-CSIC)
Solution Due to the Doppler effect arising from the random motions of the gas atoms, the laser radiation from gas-lasers is broadened around a central.
Double carbon nanotube antenna as a detector of modulated terahertz radiation V. Semenenko 1, V. Leiman 1, A. Arsenin 1, Yu. Stebunov 1, and V. Ryzhii.
Superradiance, Amplification, and Lasing of Terahertz Radiation in an Array of Graphene Plasmonic Nanocavities V. V. Popov, 1 O. V. Polischuk, 1 A. R.
N. Yugami, Utsunomiya University, Japan Generation of Short Electromagnetic Wave via Laser Plasma Interaction Experiments US-Japan Workshop on Heavy Ion.
1 Recent studies on a single-walled carbon nanotube transistor Reference : (1) Mixing at 50GHz using a single-walled carbon nanotube transistor, S.Rosenblatt,
Free Electron Lasers (I)
Generation and detection of ultrabroadband terahertz radiation
Ultrafast carrier dynamics Optical Pump - THz Probe Ultrafast carrier dynamics in Br + -bombarded semiconductors investigated by Optical Pump - THz Probe.
Terahertz Applications by THz Time Domain Spectroscopy
1 Jean-François Millithaler A Monte Carlo investigation of plasmonic noise in nanometric n-In 0.53 Ga 0.47 As channels Italian team : J.-F. Millithaler,
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
Radio-frequency single-electron transistor (RF-SET) as a fast charge and position sensor 11/01/2005.
Surface Plasmon Resonance
Parametric Instability of Mobile Elastic Gate in Tera- and Nano- High Electron Mobility Transistor V.L. Semenenko, V.G. Leiman, A.V. Arsenin, A.D. Gladun.
LASERS. LASER is an acronym for light amplification by Stimulated Emission of radiation. When radiation interacts with matter we have three processes.
Dept. of Electrical and Electronic Engineering The University of Hong Kong Page 1 IMWS-AMP 2015 Manipulating Electromagnetic Local Density of States by.
Challenges and Opportunities Currently most pulsed THz systems are based on Ti-Sapphire laser systems with ZnTe crystals as THz emitters and detectors.
Optoelectronics.
University of Siegen Institute of High Frequency and Quantum Electronics (HQE) Peter Haring Bolívar Gunnar Spickermann H Y P E R I A S – WP2 The HYPERIAS.
Broadband High-resolution Spectroscopy with Fabry-Perot Quantum Cascade Lasers Yin Wang and Gerard Wysocki Department of Electrical Engineering Princeton.
Measurements of High-Field THz Induced Photocurrents in Semiconductors Michael Wiczer University of Illinois – Urbana-Champaign Mentor: Prof. Aaron Lindenberg.
UNCLASSIFIED The Nation’s Premier Laboratory for Land Forces UNCLASSIFIED The Nation’s Premier Laboratory for Land Forces UNCLASSIFIED Response Time of.
Terahertz Charge Dynamics in Semiconductors James N. Heyman Macalester College St. Paul, MN.
UPM, DIAC. Open Course. March EMITTERS AND PDs 8.1 Emitter Basics 8.2 LEDs and Lasers 8.3 PD Basics 8.4 PD Parameters 8.5 Catalogs.
High-Order Sideband Generation Jordan Grace Physics Mentor: Hunter Banks Faculty Advisor: Prof. Mark Sherwin Institute for Terahertz Science and Technology.
Coherent THz radiation source driven by pre-bunched electron beam
1 Opto-Acoustic Imaging 台大電機系李百祺. 2 Conventional Ultrasonic Imaging Spatial resolution is mainly determined by frequency. Fabrication of high frequency.
Optical Emitters and Receivers
Interferometer configurations for Gravitational Wave Detectors
Superconducting artificial atoms coupled to 1D open space
Mingyun Li & Kevin Lehmann Department of Chemistry and Physics
Light Sources for Optical Communications
Two-Photon Absorption Spectroscopy of Rubidium
Synchronized terahertz plasmons in ultra-thin membrane GaN HEMT arrays
TIME RESOLVED SPECTROSCOPY [T.R.S.]:
Advanced Optical Sensing
Samuel Gomez Mentor: Sirak M. Mekonen
PLASMONICS AND ITS APPLICATIONS BY RENJITH MATHEW ROY. From classical fountations to its modern applications
Presentation transcript:

THz 1 Nanotechnology congress & Expo August 11-13, 2015 Frankfurt, Germany Plasmon-Resonant Terahertz Emitters and Detectors and their System Applications Stephane Boubanga Tombet Research Institute of Electrical Communication Tohoku University, Sendai, Japan Thank you for the introduction. I am Otsuji of Tohoku University. I would like to talk about terahertz emission of radiation from our original GaAs-based new device, plasmon-resonant photomixer. This work has been done by the collaboration of my laboratory, Hanabe and Dr. Meziani and Professor Sano of Hokkaido University.

Outline Introduction Plasmonic THz detection & emission 2 Outline Introduction Plasmonic THz detection & emission Principle of operation Asymmetric dual-grating-gate (A-DGG) HEMTs Record sensitivity and noise performances Coherent, monochromatic THz emission Application to nondestructive measurement THz imaging and spectroscopy utilizing A-DGG HEMT detectors and emitters Summary

Terahertz Sources: State-of-the Art and Objectives 3 Terahertz Sources: State-of-the Art and Objectives 105 III-V Laser 104 IMPATT THz Gap 1000 QCL MMIC 100 Gunn BWO THz QCL Output Power (mW) p-Ge Laser 10 Target 1 Lead Salt Laser p-Ge Laser 0.1 Multiplexer RTD 将来の情報通信技術の飛躍的な発展には新たな周波数資源の開拓が不可欠です。 トランジスタやレーザダイオードをはじめとする半導体集積デバイスの世界では、 光波と電波の融合域であるテラヘルツ領域は長らく未開拓領域として取り残されてきました。 従来の電子デバイスでは、ガンダイオードやショットキーダイオードによる逓倍器が 唯一テラヘルツ動作が可能ですが、 ミリワット級の巨大なミリ波入力から生成されるテラヘルツ電磁波は、 導波管などの狭帯域アンテナを用いても、高々マイクロワットに留まります。 一方、フォトニックデバイスでは、量子カスケードレーザーの進展が著しいものの、 フォノン散乱(結晶格子の熱による振動)によって、 数テラヘルツの室温レーザー発振を実現することは極めて困難な状況にあります。 0.01 Photomixer (UTC-PD) TUNNET 0.001 0.01 0.1 1 10 100 1000 Frequency (THz) RC, t : Transport Transition: hn/kT (Courtesy of Terahertz Technology Trend Investigation Committee, MIC, Japan)

Outline Introduction Plasmonic THz detection & emission 4 Outline Introduction Plasmonic THz detection & emission Principle of operation Asymmetric dual-grating-gate (A-DGG) HEMTs Record sensitivity and noise performances Coherent, monochromatic THz emission Application to nondestructive measurement THz imaging and spectroscopy utilizing A-DGG HEMT detectors and emitters Summary

Plasmon Resonance in 2D Electrons 5 HEMT M. Dyakonov and M. Shur, Phys. Rev. Lett. 71, 2465 (1993). Sourve Drain Gate 2D Electron Systems Sheet carrier density -e 2DEG Excitation Source Drain Courtesy: M. Dyakonov, W. Knap : electron velocity : plasma velocity : Wavelength : Effective mass : Permittivity : Elementary charge : Sheet electron density : Gate-channel distance : Gate length v vp λ m ε e ns d L Two dimensional (2D) plasma-wave instabilities in submicron transistors have attracted much attention due to their nature of promoting detection and emission of electromagnetic radiation in the terahertz range, which is expected to realize detectors and emitters as well as frequency multipliers Here schematically shows the displacement of localized electrons in an FET channel. When its density becomes very high, the electron system behaves as plasma fluid. As you can see once the electron system is coherently excited, polarized vibrations of longitudinal modes are promoted. Its energy is quantized into the standing-waves so that it is called as plasmon. In this case, the electron channel acts as a plasmon cavity. This kind of “gated 2D plasmon” has a linear dispersion relation given by this equation. The resonant frequency is determined by the cavity size or the gate length and the plasmon velocity. When you assume a 100-nm gate length and GaAs or InP based material systems, the resonant frequency falls in the terahertz range. First proposal of its terahertz device applications was made by Dyakonov and Shur in 1993. What is important is the plasmon velocity is proportional to the square root of the electron density which is controlled by the gate bias. So we can get a tunability of frequency, which is applicable to realizing frequency-tunable oscillators/detectors in the terahertz range. Submicron-gate FET can make resonant oscillation in the THz range !!

Hydrodynamic Equations of 2D Electrons’ Fluidic Motions 6 Hydrodynamic Equations of 2D Electrons’ Fluidic Motions Poisson Equation: Electrostatic induction of 2D electrons in the channel 1D Euler equation with gradual-channel approximation 1D continuity equation x

Plasma Waves Nonlinearity for Rectification of THz Radiations 7 Plasma Waves Nonlinearity for Rectification of THz Radiations M. Dyakonov and M. Shur, IEEE T-ED 43, 380 (1996). W. Knap, et al., APL 85, 675 (2004). THz プラズモンの非線形性を利用したテラヘルツ波の検出動作。 テラヘルツの正弦波を照射してプラズモンを励振すると、 プラズモンは非線形性が強いので、高調波ひずみ成分を伴って、振動する。 その波形のひずみによって、振動成分の時間平均には入射電力に比例した直流成分が生じる。 この直流電圧(光起電力といいます)を測定することで入射されたテラヘルツ波の電力が計測できる。 Photovoltaic signal

Coupling using a Broadband Antenna 8 Coupling using a Broadband Antenna + - G2 - G1 G2 G1 G2 Grating Gates 2D channel THz EM wave Electromagnetic wave このスライドは非放射モードプラズモンが回折格子型ゲート電極を介し、電磁波と結合し、プラズモンから電磁波へとエネルギー変換をしている様子を示しています。 この図は長さWの中に長さLg1のプラズモン領域とグレーティングゲートを示したものです。 単一のプラズモン共鳴の分散関係は光のように線形分散を示します。 しかし、光の速度よりプラズマ波は3桁落ちなので、これらの2本の直線は一度も交わらず、エネルギー変換が起こりません。 ここで、グレーティングゲート構造のような周期性Wを持つ構造では、周期性Wでブリルアンゾーンが定義され、このようなゾーンフォールディングが起こり、多くのクロスオーバーをもたらします。 交差しているポイントはアンテナとして機能します。 Plasma wave Plasma wave Target

Outline Introduction Plasmonic THz detection & emission 9 Outline Introduction Plasmonic THz detection & emission Principle of operation Asymmetric dual-grating-gate (A-DGG) HEMTs Record sensitivity and noise performances Coherent, monochromatic THz emission Application to nondestructive measurement THz imaging and spectroscopy utilizing A-DGG HEMT detectors and emitters Summary

Dual Grating-Gate HEMT Structure for Broadband Operation 10 T. Otsuji et al., Optics Express 14, 4815(2006). THz radiation THz wave Radiative EM conversion to non-radiative plasmon Source Drain DGG: Dual Grating Gate Plasmon excitation Doubly interdigitated grating gates One of the solution is shown here. We’ve recently proposed a new device structure that can improve the conversion gain and radiation power. This is the cross sectional view. The device is based on a HEMT structure but includes two unique features. First, it incorporates doubly interdigitated grating gates that periodically localize the 2D plasmon in sub-100-nm regions with a micron interval. This so-called grating bi-coupler can act as a broadband terahertz antenna. The second feature is a vertical cavity structure in between the top grating plane and a terahertz mirror at the backside. This can act as a terahertz radiation enhancer as a laser cavity Okey, let me show you how this device works. First, laser two photons are irradiated. Photo-generated carriers can coherently excite the plasmon at the difference frequency delta-f so that it makes a photomixing function. If the excitation frequency matches to the standing wave condition, the plasmon makes resonant oscillation. As I mentioned the plasmon wave is non-radiative mode. In this case, periodically localized plasmon grating together with the dual gate grating can work for the mode conversion. Once the plasmon is excited, the terahertz electromagnetic wave is reflected at the mirror and back to the plasmon so that the reflected wave can directly excites the plasmon again according to the Drude-optical conductivity When the plasmon resonant frequency satisfies the vertical cavity resonant condition, the terahertz electromagnetic radiation will reinforce the plasmon resonance in a recursive manner. Therefore, the vertical cavity works as an amplifier if the gain exceeds the cavity loss. THz Rectification & photovoltaic output

Principle and Issue: Broadband Rectification by DGG-HEMT 11 Principle and Issue: Broadband Rectification by DGG-HEMT ΔU Unit cell THz G1 G2 G1 G2 D S 𝒋 𝒅𝒄 𝑹 𝒄𝒉 𝜹𝒋 𝑥,𝑡 =𝑒𝜹𝒏 𝑥,𝑡 𝜹𝒗 𝑥,𝑡 𝒋 𝒅𝒄 =𝑒 𝜹𝒏 𝑥,𝑡 𝜹𝒗 𝑥,𝑡 𝑉 𝑇𝐻𝑧 𝑁 = 𝑅 𝑐ℎ 𝑗 𝑑𝑐 Cascading the unit cell Plasmon cavity boundaries 広帯域の超高感度検出器の実現 非対称二重回折格子型ゲート電極構造の導入により 検出感度を桁違いに向上。 ・・・ VTHz(1) VTHz(N) ∆𝑈= 𝑁 𝑉 𝑇𝐻𝑧 𝑁 Symmetric boundaries cancel out the photovoltaic signals

Asymmetric Dual-Grating-Gate HEMT 12 S. Boubanga-Tombet et al, APL 99, 243504 (2011)

Outline Introduction Plasmonic THz detection & emission 13 Outline Introduction Plasmonic THz detection & emission Principle of operation Asymmetric dual-grating-gate (A-DGG) HEMTs Record sensitivity and noise performances Coherent, monochromatic THz emission Application to nondestructive measurement THz imaging and spectroscopy utilizing A-DGG HEMT detectors and emitters Summary

Record-Breaking Responsivity at RT for 200-GHz Radiation 14 Record-Breaking Responsivity at RT for 200-GHz Radiation 𝑵𝑬𝑷= 𝑵 𝑹 𝒗 𝑹 𝒗 = 𝑺 𝒕 ∆𝑼 𝑺 𝒅 𝑷 𝒕 𝑺 𝒕 : beam spot size 𝑺 𝒅 : active area 𝑷 𝒕 : incident power Du : Photo Voltage 𝑵 : detector noise 0.48 pW/(Hz)0.5 at Vg2 = -0.8 V ! 22.7 kV/W at Vg2 = -0.9 V ! Y. Kurita et al, APL. 104, 251114 (2014)

Detection at 1~2 THz at 300K. (Vd-biased conditions) 15 Detection at 1~2 THz at 300K. (Vd-biased conditions) S. Boubanga-Tombet et al, APL. 104, 262104 (2014). THz source: 1 - 2 THz, ~ 2 μW 60 pW/(Hz)0.5 at 1.5 THz at Vd = 0.4 V 6.4 kV/W at 1.5 THz at Vd = 0.4 V 7k 6k 5k 4k 3k 2K 1k Vd = 0.4 V 0.2 V 0 V Responsivity (V/W) Sample @1-1 f = 1.5 THz -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 Vg1 (V)

Benchmarking the Plasmonic THz Detectors 16 Benchmarking the Plasmonic THz Detectors 20 Plasmonic Detectors [2] http://virginiadiodes.com/index.php?option=com_content&view=article&id=12&Itemid=3 [10] R. Tauk et al, APL. 89, 253511 (2006). [19] F, Schuster et al, Opt. Express, 7827 Vol. 18, No. 6 (2011). [20] Ojefors, E., et al,,” IEEE J. Solid-state Circuits 44(7), 1968–1976 (2009).

Outline Introduction Plasmonic THz detection & emission 17 Outline Introduction Plasmonic THz detection & emission Principle of operation Asymmetric dual-grating-gate (A-DGG) HEMTs Record sensitivity and noise performances Coherent, monochromatic THz emission Application to nondestructive measurement THz imaging and spectroscopy utilizing A-DGG HEMT detectors and emitters Summary

Instability Increment Hydrodynamic Approach Dyakonov-Shur Plasma Instability If the mean free path for electron-electron collisions is small compared to the mean free path for collisions with phonons and/or impurities, the hydrodynamic approach is valid Instability Increment threshold behaviour Boundary conditions 1 0.5 { Instability Threshold For M.I. Dyakonov, M.S. Shur, Phys. Rev. Lett. 71 (15), 2465 (1993)

Doppler-Shift Effect: Dyakonov-Shur Plasma Instability Drain open circuit boundary condition at the drain △j = Cte Gate source side is shorted U = Cte Source L Id Deplete ~ Open Drain = Amplification Plasma wave Source Plasma wave wave grows during each round trip between the drain and source contacts M.I. Dyakonov, M.S. Shur, Phys. Rev. Lett. 71 (15), 2465 (1993)

PW Emitter: A-DGG HEMT with Resonant-Enhanced Photonic Cavity 20 PW Emitter: A-DGG HEMT with Resonant-Enhanced Photonic Cavity T. Watanabe et al., OTST, Th3-26, Kyoto, Apr. 2013. T. Otsuji et al., IEEE Trans. Thz. Sci. Tech. 3, 63 (2013).

PW Emitter: First Success in Coherent Monochromatic Radiation at 140 K 21 PW Emitter: First Success in Coherent Monochromatic Radiation at 140 K T. Watanabe et al., OTST, Th3-26, Kyoto, Apr. 2013. T. Otsuji et al., IEEE Trans. Thz. Sci. Tech. 3, 63 (2013). ■ Dyakonov-Shur instability promotes THz oscillation. ■ Introduction of graphene will promise to realize the superradiant plasmonic lasing!

Outline Introduction Plasmonic THz detection & emission 22 Outline Introduction Plasmonic THz detection & emission Principle of operation Asymmetric dual-grating-gate (A-DGG) HEMTs Record sensitivity and noise performances Coherent, monochromatic THz emission Application to nondestructive measurement THz imaging and spectroscopy utilizing A-DGG HEMT detectors and emitters Summary

THz Imaging for Nondestructive Detection of Hidden Substances 23 THz Imaging for Nondestructive Detection of Hidden Substances T. Watanabe et al., IEEE Sensors J. 13, 89 (2013).

Plasmonic Solid-State THz Lamp to FTIR Meas Plasmonic Solid-State THz Lamp to FTIR Meas. Identifying Vapor Absorption 24 Y. Tsuda et al., JOSA B 26, A52 (2009).

25 Summary Recent advances in coherent emission and sensitive detection of THz radiation using 2D plasmons were reviewed. A-DGG HEMT structures greatly enhance the asymmet­ry of the cavity boundaries, resulting in record THz responsivity and world-first coherent monochromatic THz emission. These results will open a new paradigm in THz applications of defense, security, sensing, and ultra-broadband communications. Acknowledgements: The authors thank Profs. M. Dyakonov and M.S. Shur for their valuable discussion and Dr. H. Minamide and Prof. H. Ito for their contributions to the experiments. This work was financially supported by JST-ANR WITH program, Japan. JSPS-RFBR JPN-RUS Program, the Russian Foundation for Basic Research (Grant # 11-02-92101 and 12-02-93105) and by the RUS. The work was performed under the umbrella of the GDR-I project “Semiconductor Sources and Detectors for Terahertz Frequencies.”

Thank you very much for your attention!