R. A. Pitts et al. 1 (12) IAEA, Chengdu 16-21 Oct. 2006 ELM transport in the JET scrape-off layer R. A. Pitts, P. Andrew, G. Arnoux, T.Eich, W. Fundamenski,

Slides:



Advertisements
Similar presentations
G. Arnoux (1/19) SEWG on transient heat loads Ljubljana, 02/10/2009 Heat load measurements on JET first wall during disruptions G. Arnoux, M. Lehnen, A.
Advertisements

Progress with PWI activities at UKAEA Fusion GF Counsell, A Kirk, E Delchambre, S Lisgo, M Forrest, M Price, J Dowling, F Lott, B Dudson, A Foster,
Introduction to Plasma-Surface Interactions Lecture 6 Divertors.
Biased Electrodes for SOL Control in NSTX S.J. Zweben, R.J. Maqueda*, L. Roquemore, C.E. Bush**, R. Kaita, R.J. Marsala, Y. Raitses, R.H. Cohen***, D.D.
ASIPP Characteristics of edge localized modes in the superconducting tokamak EAST M. Jiang Institute of Plasma Physics Chinese Academy of Sciences The.
Thermal Load Specifications from ITER C. Kessel ARIES Project Meeting, May 19, 2010 UCSD.
Barbora Gulejová 1 of 12 Centre de Recherches en Physique des Plasmas SPS Annual Meeting in Lausanne, 14/2/2006 SOLPS5 modelling of ELMing H-mode on TCV.
Material Erosion and Redeposition during the JET MkIIGB-SRP Divertor Campaign A. Kirschner, V. Philipps, M. Balden, X. Bonnin, S. Brezinsek, J.P. Coad,
A. Kirk, 21 st IAEA Fusion Energy Conference, Chengdu, China, October 2006 Evolution of the pedestal on MAST and the implications for ELM power loadings.
Inter-ELM Edge Profile and Ion Transport Evolution on DIII-D John-Patrick Floyd, W. M. Stacey, S. Mellard (Georgia Tech), and R. J. Groebner (General Atomics)
ELM Filament Propogation Measurements on MAST A. Kirk a, N. B. Ayed b, B. Dudson c, R. Scannel d (a) UKAEA Culham, (b) University of York, (c) University.
1/14 In/Out balance and time scales of ELM divertor heat load in JET and ASDEX Upgrade T.Eich 1, A.Kallenbach 1, W.Fundamenski 2, A.Herrmann 1, R.A. Pitts.
A. Kirk, 20th IAEA Fusion Energy Conference, Vilamoura, Portugal, 2004 The structure of ELMS and the distribution of transient power loads in MAST Presented.
Alberto Loarte 10 th ITPA Divertor and SOL Physics Group Avila – Spain 7/10 – 1 – Update on Thermal Loads during disruptions and VDEs A. Loarte.
Paper O4.007, R. A. Pitts et al., 34th EPS Conference: 5 July 2007 Neoclassical and transport driven parallel SOL flows on TCV R. A. Pitts, J. Horacek.
R. A. Pitts: KFKI-RMKI, Budapest 12/04/2007 A summary of some recent edge physics research on TCV and JET R. A. Pitts Centre de Recherches en Physique.
R. A. Pitts et al th APS, Orlando, Florida, USA 12 November 2007 Progress in ITER relevant exhaust physics at JET Presented by R. A. Pitts CRPP-EPFL,
R. A. Pitts: FOM-Rijnhuizen, 30/11/2006 A summary of some recent edge physics research on TCV and JET R. A. Pitts Centre de Recherches en Physique des.
Integrated Effects of Disruptions and ELMs on Divertor and Nearby Components Valeryi Sizyuk Ahmed Hassanein School of Nuclear Engineering Center for Materials.
March 26, 2008Janos Marki: ELM-induced divertor heat loads1/11 ELM-induced divertor heat loads on TCV J. Marki, R. A. Pitts and TCV Team 2008 Annual Meeting.
R. A. Pitts et al., O-161 of 12PSI17, Heifei Anhui, China, 22-26/05/2006 Parallel SOL flow in TCV R. A. Pitts, J. Horacek, W. Fundamenski 1, A. Nielsen.
R. A. Pitts et al., O-8 18 th PSI, Toledo, Spain 27 May 2008 The Impact of large ELMs on JET Presented by R. A. Pitts CRPP-EPFL, Switzerland, Association.
W. Fundamenski, IAEA FEC 2004, Vilamoura, Portugal1 Power Exhaust on JET: An Overview of Dedicated Experiments W.Fundamenski, P.Andrew, T.Eich.
Barbora Gulejová 1 of 2 EPS 2007 material 20/6/2007 Time-dependent modelling of ELMing H-mode at TCV with SOLPS Barbora Gulejová, Richard Pitts, Xavier.
H. D. Pacher 1, A. S. Kukushkin 2, G. W. Pacher 3, V. Kotov 4, G. Janeschitz 5, D. Reiter 4, D. Coster 6 1 INRS-EMT, Varennes, Canada; 2 ITER Organization,
ELM filament structure in the National Spherical Torus Experiment R. J. Maqueda Nova Photonics Inc., New Jersey R. Maingi Oak Ridge National Laboratory,
D. Borba 1 21 st IAEA Fusion Energy Conference, Chengdu China 21 st October 2006 Excitation of Alfvén eigenmodes with sub-Alfvénic neutral beam ions in.
A. HerrmannITPA - Toronto /19 Filaments in the SOL and their impact to the first wall EURATOM - IPP Association, Garching, Germany A. Herrmann,
Introduction to Plasma- Surface Interactions G M McCracken Hefei, October 2007.
T.Eich 1 / 26 rehearsal for PFMC, Jülich ELM divertor heat loads in JET- ILW and full-W ASDEX Upgrade T.Eich, R.Scannel, B.Sieglin, G.Arnoux,
10th ITPA meeting on SOL & divertor physics, Avila, Spain, Jan 7-10, 2008 Arne Kallenbach 1/15 Prediction of wall fluxes and implications for ITER limiters.
Divertor/SOL contribution IEA/ITPA meeting Naka Nov. 23, 2003 Status and proposals of IEA-LT/ITPA collaboration Multi-machine Experiments Presented by.
PIC simulations of the propagation of type-1 ELM-produced energetic particles on the SOL of JET D. Tskhakaya 1, *, A. Loarte 2, S. Kuhn 1, and W. Fundamenski.
Edge Localized Modes propagation and fluctuations in the JET SOL region presented by Bruno Gonçalves EURATOM/IST, Portugal.
DSOL ITPA meeting, Toronto W. Fundamenski8/11/2006 TF-E Size and amplitude scaling of ELM-wall interaction on JET and ITER W.Fundamenski and O.E.Garcia.
ITPA DSOL meeting, Toronto W. Fundamenski9/11/2006 TF-E Introduction to ELM power exhaust: Overview of experimental observations W.Fundamenski Euratom/UKAEA.
14 Oct. 2009, S. Masuzaki 1/18 Edge Heat Transport in the Helical Divertor Configuration in LHD S. Masuzaki, M. Kobayashi, T. Murase, T. Morisaki, N. Ohyabu,
N. Fedorczak O-26 PSI 2010 San Diego 1 Nicolas Fedorczak Poloidal mapping of turbulent transport in SOL plasmas. G. Bonhomme,
1 Max-Planck-Institut für Plasmaphysik 10th ITPA meeting on SOL/Divertor Physics, 8/1/08, Avila ELM resolved measurements of W sputtering MPI für Plasmaphysik.
2 The Neutral Particle Analyzer (NPA) on NSTX Scans Horizontally Over a Wide Range of Tangency Angles Covers Thermal ( keV) and Energetic Ion.
D. Tskhakaya et al. 1 (13) PSI 18, Toledo July 2008 Kinetic simulations of the parallel transport in the JET Scrape-off Layer D. Tskhakaya, R.
Introduction of 9th ITPA Meeting, Divertor & SOL and PEDESTAL Jiansheng Hu
1) Disruption heat loading 2) Progress on time-dependent modeling C. Kessel, PPPL ARIES Project Meeting, Bethesda, MD, 4/4/2011.
EFDA EUROPEAN FUSION DEVELOPMENT AGREEMENT Task Force S1 J.Ongena 19th IAEA Fusion Energy Conference, Lyon Towards the realization on JET of an.
O-36, p 1(10) G. Arnoux 18 th PSI, Toledo, 26-30/05/2008 Divertor heat load in ITER-like advanced tokamak scenarios on JET G.Arnoux 1,(3), P.Andrew 1,
Heat Loading in ARIES Power Plants: Steady State, Transient and Off-Normal C. E. Kessel 1, M. A. Tillack 2, and J. P. Blanchard 3 1 Princeton Plasma Physics.
Improved performance in long-pulse ELMy H-mode plasmas with internal transport barrier in JT-60U N. Oyama, A. Isayama, T. Suzuki, Y. Koide, H. Takenaga,
ELM propagation in Low- and High-field-side SOLs on JT-60U Nobuyuki Asakura 1) N.Ohno 2), H.Kawashima 1), H.Miyoshi 3), G.Matsunaga 1), N.Oyama 1), S.Takamura.
Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport N. Hayashi, T. Takizuka, T. Ozeki, N. Aiba, N. Oyama JAEA Naka TH/4-2.
R. A. Pitts et al th APS, Orlando, Florida, USA 12 November 2007 Progress in ITER relevant ELM exhaust physics at JET Presented by W.Fundamenski.
1Field-Aligned SOL Losses of HHFW Power and RF Rectification in the Divertor of NSTX, R. Perkins, 11/05/2015 R. J. Perkins 1, J. C. Hosea 1, M. A. Jaworski.
ELM propagation and fluctuations characteristics in H- and L-mode SOL plasmas on JT-60U Nobuyuki Asakura 1) N.Ohno 2), H.Kawashima 1), H.Miyoshi 3), G.Matsunaga.
Fast response of the divertor plasma and PWI at ELMs in JT-60U 1. Temporal evolutions of electron temperature, density and carbon flux at ELMs (outer divertor)
Page 1 of 9 ELM loading conditions and component responses C. Kessel and M. S. Tillack ARIES Project Meeting 4-5 April 2011.
Radiation divertor experiments in the HL-2A tokamak L.W. Yan, W.Y. Hong, M.X. Wang, J. Cheng, J. Qian, Y.D. Pan, Y. Zhou, W. Li, K.J. Zhao, Z. Cao, Q.W.
1 Estimating the upper wall loading in ITER Peter Stangeby with help from J Boedo 1, D Rudikov 1, A Leonard 1 and W Fundamenski 2 DIII-D 1 JET 2 10 th.
1 V.A. Soukhanovskii/IAEA-FEC/Oct Developing Physics Basis for the Radiative Snowflake Divertor at DIII-D by V.A. Soukhanovskii 1, with S.L. Allen.
TH/7-1Multi-phase Simulation of Alfvén Eigenmodes and Fast Ion Distribution Flattening in DIII-D Experiment Y. Todo (NIFS, SOKENDAI) M. A. Van Zeeland.
2014/03/06 那珂核融合研究所 第 17 回若手科学者によるプラズマ研究会 SOL-divertor plasma simulations with virtual divertor model Satoshi Togo, Tomonori Takizuka a, Makoto Nakamura.
L.R. Baylor 1, N. Commaux 1, T.C. Jernigan 1, S.J. Meitner 1, N. H. Brooks 2, S. K. Combs 1, T.E. Evans 2, M. E. Fenstermacher 3, R. C. Isler 1, C. J.
Member of the Helmholtz Association Meike Clever | Institute of Energy Research – Plasma Physics | Association EURATOM – FZJ Graduiertenkolleg 1203 Dynamics.
U NIVERSITY OF S CIENCE AND T ECHNOLOGY OF C HINA Influence of ion orbit width on threshold of neoclassical tearing modes Huishan Cai 1, Ding Li 2, Jintao.
Melting of Tungsten by ELM Heat Loads in the JET Divertor
Pellet injection in ITER Model description Model validation
L-H power threshold and ELM control techniques: experiments on MAST and JET Carlos Hidalgo EURATOM-CIEMAT Acknowledgments to: A. Kirk (MAST) European.
Valeryi Sizyuk Ahmed Hassanein School of Nuclear Engineering
Dynamics of transient divertor re-attachment
ITER consequences of JET 13C migration experiments Jim Strachan, PPPL Jan. 7, 2008 Modeled JET 13C migration for last 2 years- EPS 07 and NF paper in prep.
Appreciate to have the opportunity
Advances in predictive thermo-mechanical modelling for the JET divertor experimental interpretation, improved protection, and reliable operation D. Iglesias,
Presentation transcript:

R. A. Pitts et al. 1 (12) IAEA, Chengdu Oct ELM transport in the JET scrape-off layer R. A. Pitts, P. Andrew, G. Arnoux, T.Eich, W. Fundamenski, E. Gauthier, A. Huber, S. Jachmich, C. Silva, D. Tskhakaya and JET EFDA Contributors 18 October 2006

R. A. Pitts et al. 2 (12) IAEA, Chengdu Oct OUTLINE ELM divertor energy asymmetries ELM filamentary structure Modelling the ELM transport –Particle-in-cell (PIC) simulations –Transient modelling of ELM filament parallel losses –Main wall particle energies –Main wall power deposition Conclusions

R. A. Pitts et al. 3 (12) IAEA, Chengdu Oct Brief diagnostic overview Divertor IR and tile thermocouples Wide angle main chamber IR Fast reciprocating probes: TTP, RFA Diagnostic Optimised Configuration (DOC)

R. A. Pitts et al. 4 (12) IAEA, Chengdu Oct Divertor target ELM energy asymmetry T. Eich et al., PSI 2006 ELM resolved target heat flux (IR) –Type I ELM energy deposition strongly favours INNER target for FWD-B  –For REV-B, some evidence for more balanced deposition, –Consistent with similar analysis from AUG (W ELM < 20 kJ) and linked to passage of net current through target plates Favourable trend for ITER target power loading (since always more energy to OUTER target inter-ELM)

R. A. Pitts et al. 5 (12) IAEA, Chengdu Oct ELM filaments – main chamber IR Filamentary power deposition detected with new wide angle IR –100 Hz frame-rate, but 300  s snapshot  catches an occasional ELM –Seen by substracting pre-ELM and ELM frames I p = 2 MA, B  = 3T W ELM ~ 150 kJ Two discharges with different contact point of first limiting flux surface #66560, 5.548s P. Andrew, G. Arnoux Coord. Transformation (x,y)  ( ,  ) #67384, s

R. A. Pitts et al. 6 (12) IAEA, Chengdu Oct ELM filaments in the far SOL TTP r - r sep ~ 80 mm at the probe Clear filamentary structure in the particle flux, T e and radial velocity –W ELM ~ 100 kJ –T e (pedestal) ~ 500 eV –T e ELM (limiter) ~ 30 eV –v r ELM ~ 500  1000 ms -1 Electrons cool rapidly in the filament as it crosses the SOL ELM duration at the probe ~10x higher than  ELM seen on MHD activity etc. C. Silva et al., J. Nucl. Mater (2005) 722

R. A. Pitts et al. 7 (12) IAEA, Chengdu Oct Modelling the ELM transient WALL Losses along B Present understanding: MHD perturbs pedestal  radial expulsion of plasma  parallel loss along field lines to divertor until filament hits wall Particle-in-Cell (PIC) simulations CPU intensive Inject ELM energy kinetically via particle source at T ped, n ped for time  ELM and follow particles to targets including full target sheath dynamics Two separate approaches being followed at JET to modelling the 1D SOL parallel transport. Transient model Fluid and kinetic versions. Simpler to solve, captures many effects of PIC simulations Introduces 2D nature of filament propagation by relating loss times to radial velocities

R. A. Pitts et al. 8 (12) IAEA, Chengdu Oct PIC simulations of parallel losses More realistic description of the ELMy JET SOL using improved PIC simulations (BIT1 code) –Scan in T ped, n ped to vary W ELM –Most of the heat flux arrives with ions on the acoustic timescale –BUT, only ~30% of ELM energy deposited when q target peaks –Electrons account for ~30% of target energy deposition –Strong transient increase over “Maxwellian” sheath transmission factors during the ELM –Fluid code assumption of fixed  underestimates q target at high W ELM Example: T ped = 1.5 keV, n ped = 1.5x10 19 m -3 W ELM ~ 120 kJ,  ELM = 200  s D. Tskhakaya

R. A. Pitts et al. 9 (12) IAEA, Chengdu Oct Transient model of ELM parallel losses Key elements of model –Temporal evolution of n, T e and T i in the filament frame of reference –Time and radius related by filament propagation velocity –Parallel loss treated as conductive and convective removal times –Radial expansion included Filament cools faster than it dilutes, electrons cooled more rapidly than ions  in the far SOL,T i > T e in the filament at wall impact W. Fundamenski, Plasma Phys. Control. Fusion 48 (2006) 109 Example with T i,ped = T e,ped = 400 eV n ped = 1.5x10 19 m -3, H + ions

R. A. Pitts et al. 10 (12) IAEA, Chengdu Oct Model consistent with RFA hot ion data Good agreement with transient model for i-side peak fluxes –Predicts T i,RFA /T i,ped = 0.3  0.5 –T e,RFA /T e,ped = 0.13  0.25 –n e,RFA /n e,ped = 0.3  0.4 Consistent with low T e on TTP probe R. A. Pitts et al., Nucl. Fusion 46 (2006) 82 W. Fundamenski, PPCF 48 (2006) 109 RFA Current of ions with energy > 400 eV Filaments on plasma and hot ion fluxes –W ELM ~ 50 kJ  T i,ped ~ 400 eV Lower ion energy in successive filaments Net “flow” to inboard side!  ELM enters SOL mainly on the outboard side r - r sep ~ 80 mm at the probe

R. A. Pitts et al. 11 (12) IAEA, Chengdu Oct ELM-wall power loads T. Eich et al., subm. to Plasma Phys. Control. Fusion W. Fundamenski et al. PSI 2006 O. E. Garcia et al., Phys. Plasmas 13 (2006) Fraction of ELM energy in the divertor decreases with increasing ELM size –Up to 60% “missing” from divertor at high W ELM Dedicated plasma-wall gap expts. give far SOL power widths of W,ELM ~ 35 mm for W ELM /W ped ~ 12% –Agrees well with transient model prediction –Use this W,ELM as reference for empirical scaling: W,ELM  35(W ELM /0.12W ped ) 1/2 –Factor 1/2 consistent with recent ELM amplitude scaling due to interchange motion W ELM,wall  W ELM exp(-  / W,ELM ) f = 1 - W ELM,wall /W ELM

R. A. Pitts et al. 12 (12) IAEA, Chengdu Oct CONCLUSIONS Significant progress at JET in the measurement and modelling of ELM SOL transport –Strong asymmetry in divertor Type I ELM energy deposition favouring inner target –ELM filaments seen on several diagnostics –Sophisticated 1D PIC modelling now providing scalings of target heat flux with ELM energy –Available data in good agreement with new transient parallel energy loss model –Implies that filaments detached from pedestal plasma –ELM ions can reach limiters with high energies See poster by A. Loarte (IT/P1-14) for more applications of the transient model to ITER wall power loads