Dynamical Fluctuations & Entropy Production Principles Karel Netočný Institute of Physics AS CR Seminar, 6 March 2007
To be discussed Min- and Max-entropy production principles: various examples From variational principles to fluctuation laws: equilibrium case Static versus dynamical fluctuations Onsager-Machlup macroscopic fluctuation theory Stochastic models of nonequilibrium Conclusions, open problems, outlook,... (In collaboration with C. Maes, K. U. Leuven)
Motivation: Modeling Earth climate [Ozawa et al, Rev. Geoph. 41(4), 1018 (2003)]
Linear electrical networks explaining MinEP/MaxEP principles U 22 Kirchhoff’s loop law: Entropy production rate: MinEP principle: Stationary values of voltages minimize the entropy production rate Not valid under inhomogeneous temperature! X k U j k = X k E j k ¾ ( U ) = ¯ Q ( U ) = ¯ X j ; k U 2 j k R j k
Linear electrical networks explaining MinEP/MaxEP principles U 22 Kirchhoff’s current law: Entropy production rate: Work done by sources: (Constrained) MaxEP principle: Stationary values of currents maximize the entropy production under constraint X j I j k = 0 ¾ ( I ) = ¯ Q ( I ) = ¯ X j ; k R j k I 2 j k Q ( I ) = W ( I ) W ( I ) = X j k E j k I j k
Linear electrical networks summary of MinEP/MaxEP principles Current law + Loop law MaxEP principle + Current law Loop law + MinEP principle Generalized variational principle I U U, I
From principles to fluctuation laws Questions and ideas How to go beyond approximate and ad hoc thermodynamical principles? Inspiration from thermostatics: Equilibrium variational principles are intimately related to structure of equilibrium fluctuations Is there a nonequilibrium analogy of thermodynamical fluctuation theory?
From principles to fluctuation laws Equilibrium fluctuations H ( x ) = N e M ( x ) = N m eq ( e ) H ( x ) = N e Typical value P ( M ( x ) = N m ) = e N [ s ( e ; m ) ¡ s eq ( e )] Probability of fluctuation H h ( x ) = H ( x ) ¡ h M ( x ) = N [ e ¡ h m ] The fluctuation made typical! s ( e ; m ) = s h eq ( e ¡ h m ) add field
From principles to fluctuation laws Equilibrium fluctuations Fluctuation functional Variational functional Thermodynamic potential Entropy (Generalized) free energy
From principles to fluctuation laws Static versus dynamical fluctuations Empirical ergodic average: Ergodic theorem: Dynamical fluctuations: Interpolating between static and dynamical fluctuations: H ( x ) = N e P ( ¹ m T = m ) = e ¡ TI ( m ) P ¡ 1 N P N k = 1 m ( x ¿ k ) = m ¢ = e ¡ NI ( ¿ ) ( m ) S t a t i c:¿ ! 1 I ( 1 ) ( m ) = s ( e ) ¡ s ( e ; m ) D ynam i c:¿ ! 0 ¹ m T ! m eq ( e ) ; T ! 1 ¹ m T = 1 T R T 0 m ( x t ) d t
Effective model of macrofluctuations Onsager-Machlup theory Dynamics: Equilibrium: Path distribution: R d m t d t = ¡ sm t + q 2 R N w t P ( m 1 = m ) / e ¡ 1 2 N sm 2 S ( m ) ¡ S ( 0 ) P ( ! ) = exp £ ¡ N 4 R T 0 R 2 ¡ d m t d t + s R m t ¢ 2 ¤
Effective model of macrofluctuations Onsager-Machlup theory Dynamics: Path distribution: Dynamical fluctuations: (Typical immediate) entropy production rate: P ( ! ) = exp £ ¡ N 4 R T 0 R 2 ¡ d m t d t + s R m t ¢ 2 ¤ ¾ ( m ) = d S ( m t ) d t = N s 2 2 R m 2 I ( m ) = 1 4 ¾ ( m ) P ( ¹ m T = m ) = P ( m t = m; 0 · t · T ) = exp £ ¡ T N s 2 8 R m 2 ¤ R d m t d t = ¡ sm t + q 2 R N » t
Towards general theory EquilibriumNonequilibrium Closed Hamiltonian dynamics Open Stochastic dynamics Mesoscopic Macroscopic
Linear electrical networks revisited Dynamical fluctuations Fluctuating dynamics: Johnson-Nyquist noise: Empirical ergodic average: Dynamical fluctuation law: R 1 R 2 E C E f 1 E f 2 E f = q 2 R ¯ » white noise U total dissipated heat E = U + R 2 I + E f 2 I = C _ U + U ¡ E f 1 R 1 ¹ U T = 1 T R T 0 U t d t ¡ 1 T l og P ( ¹ U T = U ) = 1 4 ¯ 1 ¯ 2 ( R 1 + R 2 ) ¯ 1 R 1 + ¯ 2 R 2 h U 2 R 1 + ( E ¡ U ) 2 R 2 ¡ E 2 R 1 + R 2 i
Stochastic models of nonequilibrium jump Markov processes Local detailed balance: Global detailed balance generally broken: Markov dynamics: l og k ( x ; y ) k ( y ; x ) = ¢ s ( x ; y ) = ¡ ¢ s ( y ; x ) entropy change in the environment breaking term ¢ s ( x ; y ) = s ( y ) ¡ s ( x ) + ² ( x ; y ) x y k ( x ; y ) k ( y ; x ) d ½ t ( x ) d t = X y £ ½ t ( y ) k ( y ; x ) ¡ ½ t ( x ) k ( x ; y ) ¤
Stochastic models of nonequilibrium jump Markov processes Entropy of the system: Entropy fluxes: Mean entropy production rate: S ( ½ ) = ¡ P x ½ ( x ) l og½ ( x ) Warning: Only for time-reversal invariant observables! x y k ( x ; y ) k ( y ; x ) ¾ ( ½ ) = d S ( ½ t ) d t X ( x ; y ) j ½ ( x ; y ) ¢ s ( x ; y ) = X x ; y ½ ( x ) k ( x ; y ) ½ ( x ) k ( x ; y ) ½ ( y ) k ( y ; x ) j ½ ( x ; y ) = ½ ( x ) k ( x ; y ) ¡ ½ ( y ) k ( y ; x ) |{z} zeroa t d e t a i l e db a l ance
Stochastic models of nonequilibrium jump Markov processes (“Microscopic”) MinEP principle: Can we again recognize entropy production as a fluctuation functional? x y k ( x ; y ) k ( y ; x ) In the first order in the expansion of the breaking term : ¾ ( ½ ) = m i n, ½ = ½ s
Stochastic models of nonequilibrium jump Markov processes Empirical occupation times: Ergodic theorem: Fluctuation law for occupation times? Note: ¹ p T ( x ) ! ½ s ( x ) ; T ! 1 P ( ¹ p T = ½ ) = e ¡ TI ( ½ ) ¹ p T ( x ) = 1 T R T 0 Â ( ! t = x ) d t x y k ( x ; y ) k ( y ; x ) I ( ½ s ) = 0 Natural variational functional
Stochastic models of nonequilibrium jump Markov processes Idea: Make the empirical distribution typical by modifying dynamics: The “field” a(x) is such that p(x) is stationary distribution for the modified dynamics: Comparing both processes yields the fluctuation law: P y 6 = x £ p ( x ) k a ( y ; x ) ¡ p ( y ) k a ( x ; y ) ¤ = 0 k ( x ; y ) ¡ ! k a ( x ; y ) = k ( x ; y ) e a ( y ) ¡ a ( x ) I ( p ) = P y 6 = x £ k ( x ; y ) ¡ k a ( x ; y ) ¤ difference of escape rates
Stochastic models of nonequilibrium fluctuations versus MinEP principle General observation: In the first order approximation around detailed balance The variational functional is recognized as an approximate fluctuation functional A consequence: A natural way how to go beyond MinEP principle is to study various fluctuation laws I ( ½ ) = 1 4 £ ¾ ( ½ ) ¡ ¾ ( ½ s ) ¤ + o ( ² 2 )
General conclusions open problems Similarly, MaxEP principle is obtained from the fluctuation law of empirical current Is there a natural computational scheme for the fluctuation functional far from equilibrium (e.g. for ratchets)? Natural mathematical formalism: the large deviation and Donsker-Varadhan theory Might the dynamical fluctuation theory provide a natural nonequilibrium thermodynamical formalism far from equilibrium?
Outlook from fluctuations to nonequilibrium thermodynamics? Fluctuation functional Variational functional Nonequilibrium potential “Corrected” entropy production ? ?
References C. Maes, K. N. (2006). math-ph/ S. Bruers, C. Maes, K. N. (2007). cond-mat/ C. Maes, K. N. (2006). cond-mat/ M. D. Donsker and S. R. Varadhan. Comm. Pure Appl. Math., 28:1–47 (1975). M. J. Klein and P. H. E. Meijer. Phys. Rev., 96: (1954). I. Prigogine. Introduction to Non-Equilibrium Thermodynamics. Wiley- Interscience, New York (1962). G. Eyink, J. L. Lebowitz, and H. Spohn. In: Chaos, Soviet-American Perspectives in Nonlinear Science, Ed. D. Campbell, p. 367–391 (1990). E. T. Jaynes. Ann. Rev. Phys. Chem., 31:579–601 (1980). R. Landauer. Phys. Rev. A, 12:636–638 (1975)