Is GRB050509b a genuine short? Gustavo de Barros, Maria Grazia Bernardini, Carlo Luciano bianco, Roberto Guida, Remo Ruffini.

Slides:



Advertisements
Similar presentations
GRB : A step in the proof of the uniqueness of the overall GRB structure R. Ruffini, M.G. Bernardini, C.L. Bianco, L. Caito, P. Chardonnet, F. Fraschetti,
Advertisements

Vanessa Mangano - Venice 2006 Rest frame light curves of Swift GRBs Vanessa Mangano, Giancarlo Cusumano, Valentina La Parola, Eleonora Troja, Teresa Mineo.
GRB : a canonical fake short burst L. Caito, M.G. Bernardini, C.L. Bianco, M.G. Dainotti, R. Guida, R. Ruffini. 3 rd Stueckelberg Workshop July 8–18,
Masanori Ohno (ISAS/JAXA). HXD: keV WAM: 50keV-5MeV XIS: keV X-ray Afterglow (XIS + HXD withToO) Wide energy band ( keV) Ultra-low.
Klein-Nishina effect on high-energy gamma-ray emission of GRBs Xiang-Yu Wang ( 王祥玉) Nanjing University, China (南京大學) Co-authors: Hao-Ning He (NJU), Zhuo.
Understanding the prompt emission of GRBs after Fermi Tsvi Piran Hebrew University, Jerusalem (E. Nakar, P. Kumar, R. Sari, Y. Fan, Y. Zou, F. Genet, D.
Solar flare hard X-ray spikes observed by RHESSI: a statistical study Jianxia Cheng Jiong Qiu, Mingde Ding, and Haimin Wang.
satelliteexperimentdetector type energy band, MeV min time resolution CGRO OSSE NaI(Tl)-CsI(Na) phoswich 0.05–10 4ms COMPTELNaI0.7–300.1s EGRET TASCSNaI(Tl)1-2001s.
Gamma-Ray bursts from binary neutron star mergers Roland Oechslin MPA Garching, SFB/TR 7 SFB/TR7 Albert Einstein‘s Century, Paris,
Yun-Wei YU 俞云伟 June 22, 2010, Hong Kong. Outline  Background  Implications from the shallow decay afterglows of GRBs  A qualitative discussion on magnetar.
Low-luminosity GRBs and Relativistic shock breakouts Ehud Nakar Tel Aviv University Omer Bromberg Re’em Sari Tsvi Piran GRBs in the Era of Rapid Follow-up.
GRB afterglows as background sources for WHIM absorption studies A. Corsi, L. Colasanti, A. De Rosa, L. Piro IASF/INAF - Rome WHIM and Mission Opportunities.
Reverse Shocks and Prompt Emission Mark Bandstra Astro
Very High Energy Transient Extragalactic Sources: GRBs David A. Williams Santa Cruz Institute for Particle Physics University of California, Santa Cruz.
1 Nanjing June 2008 A universal GRB photon energy – luminosity relationship * Dick Willingale, Paul O’Brien, Mike Goad, Julian Osborne, Kim Page, Nial.
GLAST Science LunchDec 1, 2005 E. do Couto e Silva 1/21 Can emission at higher energies provide insight into the physics of shocks and how the GRB inner.
Kick of neutron stars as a possible mechanism for gamma-ray bursts Yong-Feng Huang Department of Astronomy, Nanjing University.
Ehud Nakar California Institute of Technology Gamma-Ray Bursts and GLAST GLAST at UCLA May 22.
A burst of new ideas Nature Vol /28 December 2006 徐佩君 HEAR group meeting 12/
Gamma Ray Bursts and LIGO Emelie Harstad University of Oregon HEP Group Meeting Aug 6, 2007.
Swift Nanjing GRB Conference Prompt Emission Properties of X-ray Flashes and Gamma-ray Bursts T. Sakamoto (CRESST/UMBC/GSFC)
Modeling GRB B Xuefeng Wu (X. F. Wu, 吴雪峰 ) Penn State University Purple Mountain Observatory 2008 Nanjing GRB Workshop, Nanjing, China, June
Gamma Ray Bursts A High Energy Mystery By Tessa Vernstrom Ast 4001, Fall 2007 A High Energy Mystery By Tessa Vernstrom Ast 4001, Fall 2007.
July 2004, Erice1 The performance of MAGIC Telescope for observation of Gamma Ray Bursts Satoko Mizobuchi for MAGIC collaboration Max-Planck-Institute.
Swift Annapolis GRB Conference Prompt Emission Properties of Swift GRBs T. Sakamoto (CRESST/UMBC/GSFC) On behalf of Swift/BAT team.
GRB s CENTRAL -ENGINE & FLARes WARSAW Guido Chincarini & Raffaella margutti 1WARSAW 2009.
Monte-Carlo Simulation of Thermal Radiation from GRB Jets Sanshiro Shibata (Konan Univ.) Collaborator: Nozomu Tominaga (Konan Univ., IPMU)
The soft X-ray landscape of GRBs: thermal components Rhaana Starling University of Leicester Royal Society Dorothy Hodgkin Fellow With special thanks to.
Rise and Fall of the X-ray flash : an off-axis jet? C.Guidorzi 1,2,3 on behalf of a large collaboration of the Swift, Liverpool and Faulkes Telescopes,
Recent Results and the Future of Radio Afterglow Observations Alexander van der Horst Astronomical Institute Anton Pannekoek University of Amsterdam.
Properties of X- Ray Rich Gamma- Ray Bursts and X -Ray Flashes Valeria D’Alessio & Luigi Piro INAF: section of Rome, Italy XXXXth Moriond conference, Very.
Gamma-Ray Bursts observed with INTEGRAL and XMM- Newton Sinead McGlynn School of Physics University College Dublin.
Tight correlations in ‘canonical’ lightcurves of Gamma Ray Bursts M.G. Dainotti 1, R. Willingale 2, V.F. Cardone 3, S. Capozziello 4, M. Ostrowski 1 Dainotti.
Extended emission in short gamma-ray bursts registered by SPI-ACS of INTEGRAL observatory Pavel Minaev 1, 2, Alexei Pozanenko 1, Vladimir Loznikov 1 1-
The Early Time Properties of GRBs : Canonical Afterglow and the Importance of Prolonged Central Engine Activity Andrea Melandri Collaborators : C.G.Mundell,
Studies on the emission from the receding jet of GRB Xin Wang, Y. F. Huang, and S. W. Kong Department of Astronomy, Nanjing University, China A&A submitted.
A numerical study of the afterglow emission from GRB double-sided jets Collaborators Y. F. Huang, S. W. Kong Xin Wang Department of Astronomy, Nanjing.
1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.
A Tidal Disruption model for gamma-ray burst of GRB YE LU National Astronomical Observatories, Chinese Academy of Sciences June 22-27, 2008 Nanjing.
Gamma-Ray Bursts Energy problem and beaming * Mergers versus collapsars GRB host galaxies and locations within galaxy Supernova connection Fireball model.
Photospheric emission from Structured Jet Hirotaka Ito Collaborators Shigehiro Nagataki YITP @ YITP Lunch Seminar /30 Shoichi Yamada Waseda University.
Gamma-Ray Bursts: Open Questions and Looking Forward Ehud Nakar Tel-Aviv University 2009 Fermi Symposium Nov. 3, 2009.
Neutrinos and TeV photons from Soft Gamma Repeater giant flares Neutrino telescopes can be used as TeV  detectors for short time scale events using 
Stochastic Wake Field particle acceleration in GRB G. Barbiellini (1), F. Longo (1), N.Omodei (2), P.Tommasini (3), D.Giulietti (3), A.Celotti (4), M.Tavani.
G O D D A R D S P A C E F L I G H T C E N T E R 1 Recent GRB Results from Swift John Cannizzo/UMBC/Goddard LSC Meeting, Hanford, WA August 16, 2005 LIGO-G Z.
Moriond – 1 st -8 th Feb 2009 – La Thuile, Italy. Page 1 GRB results from the Swift mission Phil Evans, Paul O'Brien and the Swift team.
Dave Tierney S. McBreen, R. Preece, G. Fitzpatrick and the GBM Team Low-Energy Spectral Deviations in a Sample of GBM GRBs DT acknowledges support from.
The Lag-Luminosity Relation in the GRB Source Frame T. N. Ukwatta 1,2, K. S. Dhuga 1, M. Stamatikos 3, W. C. Parke 1, T. Sakamoto 2, S. D. Barthelmy 2,
Francisco Virgili, LJMU June 22, 2012 GRBs 2012 Liverpool C. Mundell, A. Melandri, C. Guidorzi, R. Margutti, A. Gomboc, S. Kobayashi, V. Pal’shin, etc…
GRBs, Falcone et al.Next Generation Gamma White Paper Mtg. (St. Louis 2006) GRB Science with Next Generation Instrument Abe Falcone, David Williams, Brenda.
Gamma-Ray Burst Working Group Co-conveners: Abe Falcone, Penn State, David A. Williams, UCSC,
A relation to estimate the redshift from the X-ray afterglow light curve Bruce Gendre (IASF-Roma/INAF) & Michel Boër (OHP/CNRS)
Masnori Ohno (ISAS/JAXA). Long/Short GRBs are different ? There are two GRB classes, Long/Short GRBs in T90 distribution Different origin ? Hardness ratio;
Alessandra Corsi (1,2) Dafne Guetta (3) & Luigi Piro (2) (1)Università di Roma Sapienza (2)INAF/IASF-Roma (3)INAF/OAR-Roma Fermi Symposium 2009, Washington.
Results of Searches for Muon Neutrinos from Gamma-Ray Bursts with IC-22 Madison Collaboration Meeting 2009 Erik Strahler UW-Madison 28/4/2009.
Venezia - June 5, 2006S.Mereghetti - Swift and GRBs Conference1 Dust scattering X-ray expanding rings around GRBs Sandro Mereghetti Andrea Tiengo Giacomo.
R. M. Kippen (LANL) – 1 – 23 April, 2002  Short transients detected in WFC (2–25 keV) with little/no signal in GRBM (40–700 keV) and no BATSE (>20 keV)
GRB and GRB A the flares and the spectral lag M.G. Dainotti M.G.Bernardini, C.L.Bianco, L. Caito, R. Guida, R.Ruffini.
Stochastic wake field particle acceleration in Gamma-Ray Bursts Barbiellini G., Longo F. (1), Omodei N. (2), Giulietti D., Tommassini P. (3), Celotti A.
Radio afterglows of Gamma Ray Bursts Poonam Chandra National Centre for Radio Astrophysics - Tata Institute of Fundamental Research Collaborator: Dale.
The Search for Primordial Black Holes Using Very Short Gamma Ray Bursts D.B. Cline, C. Matthey and S. Otwinowski, UCLA B. Czerny, A. Janiuk, Copernicus.
The prompt optical emission in the Naked Eye Burst R. Hascoet with F. Daigne & R. Mochkovitch (Institut d’Astrophysique de Paris) Kyoto − Deciphering then.
The Mysterious Burst After the Short Burst Jay Norris Brief History, Overview, Central Questions Spectral lag distributions (long & short GRBs) Pulse width.
Ariel Majcher Gamma-ray bursts and GRB080319B XXIVth IEEE-SPIE Joint Symposium on Photonics, Web Engineering, Electronics for Astronomy and High Energy.
Gamma-ray Bursts (GRBs)
Le spectre des GRBs dans le modèle EMBH
MAXI Mission M. Serino (RIKEN).
Differential Emission Measure
Swift observations of X-Ray naked GRBs
Stochastic Wake Field particle acceleration in GRB
Presentation transcript:

Is GRB050509b a genuine short? Gustavo de Barros, Maria Grazia Bernardini, Carlo Luciano bianco, Roberto Guida, Remo Ruffini.

Characteristics This GRB is important because is the first short GRB with observed afterglow - Z = duration of BAT data: 40 ms fig. from Nature,Vol 437, 851

Short scale + afterglow Gehrels et al. (2005) say that the data observed by BAT are typical of a short burst. But there are also (after 100s from BAT data) observations from XRT. So, how classify this GRB? fig. from Nature,Vol 437, 851

Fireshell model In the fireshell model canonicals GRBs have two important emission phases: 1- when the plasma reaches the moment of transparency (decouple of photons) there is the emission we call 'proper-GRB' (P-GRB). 2- After this, the fireshell (formed now mainly by barions) reaches the CBM (circumburst medium) and emits energy by inelastic collisions. This emission is called 'afterglow'.

Classification of grbs Classification is done using the B parameter: B = Mc 2 /E B gives the ratio between the energy emitted in the P-GRB and the energy emitted in the afterglow. If there is more energy emmited in the P-GRB the GRB is a short one, else, will be a long one. But there is also the 'fake short': The GRB has more energy emmited in the afterglow, but the light curve gives us the impression that the P-GRB is more energetic.

What about b? We analysed GRB050509b to see it's classification. It could be:  a fake short;  just a long with an observed P-GRB (almost called 'precursor' in the literature)  a genuine short.

First Analysis In the first analisys we identifyed the prompt emission (data from BAT) with the P-GRB. In this case these data would be the 'short part' of the GRB and the XRT-data the long part. The parameters are:  B=1.6 x  ρ = 1 (#/cm 3 )‏  R = 1 x  E=1.48x10 48 erg

The first analisys show us that this GRB is a long one because almost 80% of the total energy is emmitted in the afterglow. The point of view (in literature) that this is a 'short' with afterglow, is nothing more then our canonical picture for GRBs. The first part is the P-GRB which is 'short' in time, accompained by the afterglow.

Second analysis In the second analisys we want to see if is possible to do a fit in which the GRB will be a genuine short. To do this we identifyed the data from BAT (prompt emission) with the peak of the afterglow. The parameters are:  B = 1.1 x ( #/cm 3 ) ; r > 3 x cm  ρ = 0.9 x ( #/cm 3 ) ; r < 3 x cm  R = 6 x  E = 3.2 x erg E P-GRB = 2.1 x 10 49

Second analysis In the second analysis all the observed data are from the emission of the afterglow. The P-GRB is too hard to be observed, we expect a peak emission for it, about 850 kev. Since the above threshold for BAT is 350 kev, it wasn't observed.

The second analisys says that this GRB would be a genuine short. Because it has 65% of the total energy emmitted in the P-GRB. But it is important to note that we cannot see the 'short' characteristic of it. The short timescale data observed by BAT are part of the 'long' domain of the GRB (the afterglow).

The B parameter o analysis: black line - B = 1.6 x Long GRB 2 o analysis: yellow line B = 1.1 x Genuine short GRB

Conclusions  This GRB may be a genuine short one, but has also the possibility to be long.  We expect hard emission in the begining phases (850 kev in this case).  We need data also in this range to remove ambiguity (in possible newer sources), and to constraint the parameters of the model.  We hope that Glast satellite will help us to solve these problems.