Kenneth Wood St Andrews

Slides:



Advertisements
Similar presentations
Chemistry of Protoplanetary Disks with Grain Settling and Lyman α Radiation Jeffrey Fogel, Tom Bethell and Edwin Bergin University of Michigan.
Advertisements

Probing the Conditions for Planet Formation in Inner Protoplanetary Disks James Muzerolle.
Millimeter-Wavelength Observations of Circumstellar Disks and what they can tell us about planets A. Meredith Hughes Miller Fellow, UC Berkeley David Wilner,
Models of Disk Structure, Spectra and Evaporation Kees Dullemond, David Hollenbach, Inga Kamp, Paola DAlessio Disk accretion and surface density profiles.
Accretion and Variability in T Tauri Disks James Muzerolle.
Cumber01.ppt Thomas Henning Max-Planck-Institut für Astronomie, Heidelberg Protoplanetary Accretion Disks From 10 arcsec to arcsec HST.
Structure and Evolution of Protoplanetary Disks Carsten Dominik University of Amsterdam Radboud University Nijmegen.
Structure & Evolution of Protoplanetary Disks: Merging 3D Radiation Transfer & Hydrodynamics Kenneth Wood St Andrews.
Francesco Trotta YERAC, Manchester Using mm observations to constrain variations of dust properties in circumstellar disks Advised by: Leonardo.
FU Ori and Outburst Mechanisms Zhaohuan Zhu Hubble Fellow, Princeton University Collaborators: Lee Hartmann (Umich), Charles Gammie (UIUC), Nuria Calvet.
Resolved Inner Disks around Herbig Ae/Be Stars: Near-IR Interferometry with PTI Josh Eisner Collaborators: Ben Lane, Lynne Hillenbrand, Rachel Akeson,
Processes in Protoplanetary Disks Phil Armitage Colorado.
Processes in Protoplanetary Disks Phil Armitage Colorado.
Processes in Protoplanetary Disks Phil Armitage Colorado.
Dust Dynamics in Debris Gaseous Disks Taku Takeuchi (Kobe Univ., Japan) 1.Dynamics of Dust - gas drag - radiation 2. Estimate of Gas Mass 3. Dust Disk.
STScI May Symposium 2005 Migration Phil Armitage (University of Colorado) Ken Rice (UC Riverside) Dimitri Veras (Colorado)  Migration regimes  Time scale.
Efficient Monte Carlo continuum radiative transfer with SKIRT Maarten Baes 2 nd East-Asia Numerical Astrophysics Meeting, Daejeon, Korea 3 November 2006.
SMA Observations of the Herbig Ae star AB Aur Nagayoshi Ohashi (ASIAA) Main Collaborators: S.-Y. Lin 1, J. Lim 2, P. Ho 3, M. Momose 4, M. Fukagawa 5 (1.
Gaspard Duchêne UC Berkeley – Obs. Grenoble Gaspard Duchêne - Circumstellar disks and planets - Kiel - May
Ge/Ay133 SED studies of disk “lifetimes” & Long wavelength studies of disks.
A Molecular Inventory of the L1489 IRS Protoplanetary Disk Michiel R. Hogerheijde Christian Brinch Leiden Observatory Jes K. Joergensen CfA.
Excesos IR F   Discos “flared ”
Constraining TW Hydra Disk Properties Chunhua Qi Harvard-Smithsonian Center for Astrophysics Collaborators : D.J. Wilner, P.T.P. Ho, T.L. Bourke, N. Calvet.
The Influence of Planets on Disk Observations (and the influence of disks on planet observations) Geoff Bryden (JPL) Doug Lin (UCSC) Hal Yorke (JPL)
Disk evolution and Clearing P. D’Alessio (CRYA) C. Briceno (CIDA) J. Hernandez (CIDA & Michigan) L. Hartmann (Michigan) J. Muzerolle (Steward) A. Sicilia-Aguilar.
Model SEDs of Massive YSOs Barbara Whitney, Tom Robitaille, Remy Indebetouw, Kenny Wood, and Jon Bjorkman.
(pre-ALMA) The size scales are too small even for the largest current & near-term arrays. Spectroscopy to the rescue? How can we probe gas in the planet-forming.
1 Protoplanetary Disks: An Observer’s Perpsective David J. Wilner (Harvard-Smithsonian CfA) RAL 50th, November 13, 2008 Chunhua Qi Meredith Hughes Sean.
Nov PALM 3000 Requirements Review Imaging of Protoplanetary and Debris Disks Karl Stapelfeldt Jet Propulsion Laboratory.
Ge/Ay133 Disk Structure and Spectral Energy Distributions (SEDs)
Ge/Ay133 Disk Structure and Spectral Energy Distributions (SEDs)
Processes in Protoplanetary Disks
Gas Emission From TW Hya: Origin of the Inner Hole Uma Gorti NASA Ames/SETI (Collaborators: David Hollenbach, Joan Najita, Ilaria Pascucci)
Monte Carlo Radiation Transfer in Protoplanetary Disks: Disk-Planet Interactions Kenneth Wood St Andrews.
A young massive planet in a star-disk system Setiawan, Henning, Launhardt et al. January 2008, Nature Letter 451 ESO Journal Club – January 2008.
Molecular Hydrogen Emission from Protoplanetary Disks Hideko Nomura (Kobe Univ.), Tom Millar (UMIST) Modeling the structure, chemistry and appearance of.
Debris Disk Imaging with HST/NICMOS: The GO/10177 Debris Disk Survey Part 2: The Resolved Disks GLENN SCHNEIDER NICMOS Project Steward Observatory 933.
Modeling Disks of sgB[e] Stars Jon E. Bjorkman Ritter Observatory.
Star-disc interaction : do planets care ?
1 Are we seen the effects of forming planets in primordial disks? Laura Ingleby, Melissa McClure, Lucia Adame, Zhaohuan Zhu, Lee Hartmann, Jeffrey Fogel,
G. Duchêne (UCB) A.M. Ghez (UCLA), C.E. McCabe (IPAC) C. Pinte, F. Menard, G. Duvert, K. Stapelfeldt, D. Padgett, M. Perrin, H. Bouy, D. Barrado, A. Noriega-Crespo,
Non-symetrical Protoplanetary Disks Annibal Hetem Jr. (FAFIL/FSA) Jane Gregorio-Hetem (IAG/USP)
Ralf Siebenmorgen Toulouse June’10  Dust model of the ISM  PAH bands in starburst nuclei  Monte Carlo radiative transfer  PAH destruction in T Tauri.
1 S. Davis, April 2004 A Beta-Viscosity Model for the Evolving Solar Nebula Sanford S Davis Workshop on Modeling the Structure, Chemistry, and Appearance.
A Submillimeter View of Protoplanetary Disks Sean Andrews University of Hawaii Institute for Astronomy Jonathan Williams & Rita Mann, UH IfA David Wilner,
Monte Carlo Radiation Transfer in Circumstellar Disks Jon E. Bjorkman Ritter Observatory.
Infall rates from observations Joseph Mottram 1. Why is infall relevant? Infall must happen for star formation to proceed The rate of infall on envelope.
A-Ran Lyo KASI (Korea Astronomy and Space Science Institute) Nagayoshi Ohashi, Charlie Qi, David J. Wilner, and Yu-Nung Su Transitional disk system of.
October 27, 2006US SKA, CfA1 The Square Kilometer Array and the “Cradle of Life” David Wilner (CfA)
1 Grain Growth in Protoplanetary Disks: the (Sub)Millimeter Sep 11, 2006 From Dust to Planetesimals, Ringberg David J. Wilner Harvard-Smithsonian Center.
The AU Mic Debris Ring Density profiles & Dust Dynamics J.-C. Augereau & H. Beust Grenoble Observatory (LAOG)
Primordial Disks: From Protostar to Protoplanet Jon E. Bjorkman Ritter Observatory.
Gaspard Duchêne UC Berkeley & Obs. Grenoble From circumstellar disks to planetary systems – Garching – Nov
Protoplanetary disk evolution and clearing Paola D’Alessio (CRYA) J. Muzerolle (Steward) C. Briceno (CIDA) A. Sicilia-Aguilar (MPI) L. Adame (UNAM) IRS.
Processes in Protoplanetary Disks Phil Armitage Colorado.
High Dynamic Range Imaging and Spectroscopy of Circumstellar Disks Alycia Weinberger (Carnegie Institution of Washington) With lots of input from: Aki.
Massive planets in FU Orionis objects Giuseppe Lodato Institute of Astronomy, Cambridge In collaboration with Cathie Clarke (IoA)
1 ALMA View of Dust Evolution: Making Planets and Decoding Debris David J. Wilner (CfA) Grain Growth  Protoplanets  Debris.
Grain Growth and Substructure in Protoplanetary Disks David J. Wilner Harvard-Smithsonian Center for Astrophysics S. Corder (NRAO) A. Deller.
ERIC HERBST DEPARTMENTS OF PHYSICS AND ASTRONOMY THE OHIO STATE UNIVERSITY Chemistry in Protoplanetary Disks.
Planet and Gaps in the disk
Star and Planet Formation
Radiative transfer in galactic disks…
Probing CO freeze-out and desorption in protoplanetary disks
“The hot bubbles around nascent planets :
Some considerations on disk models
Planetesimal formation in self-gravitating accretion discs
Disks Around Young Stars with ALMA & SPHEREx
Ge/Ay133 SED studies of disk “lifetimes” &
The chemistry and stability of the protoplanetary disk surface
Presentation transcript:

Kenneth Wood St Andrews Monte Carlo Radiation Transfer in Protoplanetary Disks: Disk-Planet Interactions, Structure and Warping Kenneth Wood St Andrews

Radiation Transfer + Hydrodynamics RT Models: Barbara Whitney, Jon Bjorkman, Christina Walker, Mark O’Sullivan Dust Theory: Mike Wolff SPH Models: Ken Rice, Mike Truss, Ian Bonnell Observations: Charlie Lada, Ed Churchwell, Glenn Schneider, Angela Cotera, Keivan Stassun

Monte Carlo Development History Scattered light disks & envelopes (1992) 3D geometry & illumination (1996) Dust radiative equilibrium (2001) Monte Carlo for disk surface + diffusion for interior (2002) Density grids from SPH simulations (2002) Spatial variation of dust opacity (2003) Self consistent vertical hydrostatic equilibrium (2003) 1992: Predictions 1996: HST data GM Aur: 4AU gap, disk-planet interaction

Disk Structure Calculations Above used parameterized disks: power laws for S(r), h(r) Disk theory: reduce model parameter space Irradiated accretion disks: S ~ r -1, h ~ r 1.25 (D’Alessio, Calvet, & collaborators) New Monte Carlo: iterate for disk structure (Walker et al. 2004) Model disks around GM Aur and AA Tau

Disk-Planet Interactions: Gap Clearing Simulation from Ken Rice & Phil Armitage Papaloizou, Lin, Bodenheimer, Lubow, Artymowicz, Nelson, D’Angelo, Kley, … Observational signatures: images, SEDs?

Protoplanetary Disks Need high resolution imaging: ALMA Gap clearing simulation images: 700mm 700mm ALMA simulation Wolf et al. 2002

Inner Gaps from SED Modeling Remove inner disk material: remove near-IR excess emission Rin = 7R* Rin = 4 AU GM Aur

GM Aur: Disk/Planet Interaction? Schneider et al. 2003 NICMOS coronagraph Scattered light modeling: Mdisk ~ 0.04 M8; Rdisk ~ 300 AU; i ~ 50

GM Aur: Disk/Planet Interaction? No near-IR excess SED model requires 4AU gap: planet?

GM Aur: Disk/Planet Interaction? Rice et al. 2003 3D SPH calculation from Ken Rice Planet at 2.5AU clears inner 4AU in ~2000 yr

GM Aur: Disk/Planet Interaction? Rice et al. 2003 3D SPH calculation from Ken Rice Planet at 2.5AU clears inner 4AU in ~2000 yr

GM Aur: Disk/Planet Interaction? Mp = 2MJ Mp = 50MJ Rice et al. 2003 Spitzer SED can discriminate planet mass Centroid shifting ~ 0.1mas: Keck, SIM?

GM Aur: Disk/Planet Interaction? TW Hya Rice et al. 2003 Calvet et al. 2002 Spitzer SED can discriminate planet mass Centroid shifting ~ 0.1mas: Keck, SIM?

AA Tau: Large and Small Scale Disk Structure Photopolarimetry (Bouvier, Menard, et al.) P ~ 8.4 days, DV ~ 1 mag, D(B-V) ~ 0 Star eclipsed by warp in inner disk SED model to get disk structure Warped disk model for photopolarimetry SPH: tilted dipole warps disk

AA Tau SED Modeling T = 4000 K, R = 2R8, M = 0.5M8 M = 2e-9 M8/yr, Rd = 200 AU, i = 70 O’Sullivan et al. (2004)

Analytic Disk Warp AA Tau: P ~ 8.4 days Warp at r ~ 0.07 AU, amplitude ~ 0.02 AU O’Sullivan et al. (2004)

Photopolarimetry Simulation DV DV ~ 1 mag DP ~ 0.3% P (%) PA O’Sullivan et al. (2004)

SPH Simulation Inclined dipole field: include magnetic force in SPH code (NOT MHD!) Need B = 2 kG, at latitude q = 65 (see also Terquem & Papaloizou)

Summary & Future Research Monte Carlo: self-consistent disk structure calculations GM Aur: Disk-planet interaction, need Spitzer SEDs AA Tau: SED model for disk structure Warped disk for photopolarimetry SPH: dipole B = 2 kG, at latitude q = 65 Coding: Radiation pressure Include gas opacity Transiently heated grains Goal: merge radiation transfer & hydro Codes now available at: http://gemelli.spacescience.org/~bwhitney/codes

Disk Dust: Grain Growth ISM Disk dust Dust Size Distribution: Power law + exponential decay Grain Sizes in excess of 50mm Grayer opacity, Sub-mm slope ~ 1/l Fits HH30, GM Aur, AA Tau Beckwith & Sargent (1991): sub-mm continuum SEDs: k ~ 1/l

Estimating Rin from SEDs 6 AU 20 AU 300 AU T r1/5 GM Aur Hot inner edge emits in IR Include inner edge emission when estimating Rin

Vertical Hydrostatic Equilibrium GM Aur Monte Carlo, Rin = 4 AU, i = 0 - 50 CG97, Rin = 0.1 AU CG97, Rin = 4 AU

Estimating Rin from SEDs Monte Carlo CG97 KH87 ALS87 MC models include inner edge emission Other models without inner edge emission No 10mm excess MC: Rin > 10 AU CG: Rin ~ 2.5 AU

Disk Structure Walker et al. (2004)

SEDs D’Alessio: i = 60 MC: i = 63 MC: i= 60 Walker et al. (2004)

Comparison Summary MC: Disk slightly hotter at large radii Slightly more emission in 20-200mm Differences: Radiation pressure Dust opacity Treatment of upper layers Non-isotropic scattering Radial transport in outer disk